$\newcommand\p[3]{{}^{#1}{p}^{#2}_{#3}} \newcommand\pdot[3]{{}^{#1}{\dot{p}}^{#2}_{#3}} \newcommand\pddot[3]{{}^{#1}{\ddot{p}}^{#2}_{#3}} \newcommand\R[2]{{}^{#1}{R}^{#2}} \newcommand\Rdot[2]{{}^{#1}{\dot{R}}^{#2}} \newcommand\Rddot[2]{{}^{#1}{\ddot{R}}^{#2}} \newcommand\w[2]{{}^{#1}{\omega}^{#2}}$Consider the following 3 frames:
- The world frame $W = (0,(e_x,e_y,e_z))$, where $0$ is the zero vector in $\mathbb R^3$ and $(e_x,e_y,e_z)$ are the standard basis vectors in $\mathbb R^3$.
- Frame $A = (O_A,(a_x,a_y,a_z))$, where $O_A \in \mathbb R^3$ is the origin of frame $A$ and $(a_x,a_y,a_z)$ is an orthonormal basis for frame $A$.
- Frame $B = (O_B,(b_x,b_y,b_z))$ where $O_B \in \mathbb R^3$ is the origin of frame $B$ and $(b_z,b_y,b_z)$ is an orthonormal basis for frame $B$.
Let $\R{A}{W}$ ($\R{B}{W}$, respectively) be the rotation matrix that maps a vector expressed in the world frame $W$ to a vector expressed in frame $A$ ($B$, respectively).
That is, if the basis vectors $(a_x,a_y,a_z)$ and $(b_x,b_y,b_z)$ are expressed in the world frame as $\left(a_x^W,a_y^W,a_z^W\right)$ and $\left(b_x^W,b_y^W,b_z^W\right)$ respectively, then $$ \begin{align} \R{A}{W} &= \begin{bmatrix}a_x^W & a_y^W & a_z^W\end{bmatrix}^T \begin{bmatrix}e_x & e_y & e_z\end{bmatrix} \\ \R{B}{W} &= \begin{bmatrix}b_x^W & b_y^W & b_z^W\end{bmatrix}^T \begin{bmatrix}e_x & e_y & e_z\end{bmatrix} \end{align} $$ Additionally, let $\p{S}{U}{V}$ be a translation vector from the origin of frame $S$ to the origin of frame $U$ expressed in frame $V$.
We can derive the angular velocity vector $\w{A}{W}$ of frame $A$ relative to the world frame $W$ as follows: $$ \begin{align} \p{W}{A}{A} &= \R{A}{W} \cdot \p{W}{A}{W} \\ \pdot{W}{A}{A} &= \Rdot{A}{W} \cdot \p{W}{A}{W} + \R{A}{W} \cdot \pdot{W}{A}{W} \\ \pdot{W}{A}{A} &= \Rdot{A}{W} \cdot \R{W}{A} \cdot \p{W}{A}{A} + \R{A}{W} \cdot \pdot{W}{A}{W} \end{align} $$ The matrix $\Rdot{A}{W} \cdot \R{W}{A}$ is skew-symmetric, and so it always has the form $$ \Rdot{A}{W} \cdot \R{W}{A} = \begin{bmatrix}0 & -\omega_z(t) & \omega_y(t) \\ \omega_z(t) & 0 & -\omega_x(t) \\ -\omega_y(t) & \omega_x(t) & 0\end{bmatrix} $$ Hence, we let $$ \w{A}{W} = \begin{bmatrix}\omega_x(t) \\ \omega_y(t) \\ \omega_z(t)\end{bmatrix} \tag{1} $$ such that $$ \begin{align} \pdot{W}{A}{A} &= \Rdot{A}{W} \cdot \R{W}{A} \cdot \p{W}{A}{A} + \R{A}{W} \cdot \pdot{W}{A}{W} \\ &= \w{A}{W} \times \p{W}{A}{A} + \R{A}{W} \cdot \pdot{W}{A}{W} \end{align} $$ To summarize, we have derived the angular velocity vector $\w{A}{W}$ in $(1)$.
Question
I have read in several books and resources, such as here (see footnote a under the table), that $\w{A}{W}$ has an "expressed-in" frame, such as frame $X$ for example. That is, $\w{A}{W}$ should really be written as ${}^{A}\omega^W_X$. However, it is not clear to me why there should even be an "expressed-in" frame when none of the rotation matrices $\R{W}{A}$ and $\R{A}{W}$ and the derivative $\Rdot{A}{W}$ have an expressed-in frame.
In other words, since $\w{A}{W}$ is constructed from the elements of $\Rdot{A}{W} \cdot \R{W}{A}$, then it is not clear to me what the "expressed-in" frame should be.