Start from the vector equations summed at the center of mass
$$ \begin{aligned}
\boldsymbol{F} & = m \boldsymbol{a}_C \\
\boldsymbol{\tau}_C &= \mathcal{I}_C \boldsymbol{\alpha} + \boldsymbol{\omega} \times \mathcal{I}_C \boldsymbol{\omega} \\
\end{aligned} \tag{1}$$
where $\boldsymbol{a}_C$ is the acceleration of the center of mass, $\mathcal{I}_C$ is the mass moment of inertia tensor aligned to the interial coordinate directions, $\boldsymbol{F}$ is the net force applied on the body, and $\boldsymbol{\tau}_C$ the net torque applied on the body summed about the center of mass (which includes all effects from applied forces offset from the center of mass)
Now take an arbitrary point A, not at the center of mass, and apply the following transformations
$$ \begin{aligned}
\boldsymbol{a}_C &= \boldsymbol{a}_A + \boldsymbol{\alpha}\times \boldsymbol{c} + \boldsymbol{\omega} \times ( \boldsymbol{\omega} \times \boldsymbol{c}) \\
\boldsymbol{\tau}_A &= \boldsymbol{\tau}_C + \boldsymbol{c}\times \boldsymbol{F}
\end{aligned} \tag{2}$$
where $\boldsymbol{c}$ is the instantaneous vector position of the center of mass relative to the arbitrary point A, $\boldsymbol{a}_A$ the acceleration of the arbitrary point, and $\boldsymbol{\tau}_A$ is the net torque also summed about the arbitrary point.
$$\begin{aligned}
\boldsymbol{F} & = m \left( \boldsymbol{a}_A + \boldsymbol{\alpha}\times \boldsymbol{c} + \boldsymbol{\omega} \times ( \boldsymbol{\omega} \times \boldsymbol{c}) \right) \\
\boldsymbol{\tau}_A & = \mathcal{I}_C \boldsymbol{\alpha} + \boldsymbol{\omega} \times \mathcal{I}_C \boldsymbol{\omega} + \boldsymbol{c} \times \boldsymbol{F}
\end{aligned} \tag{3}$$
And now we can solve for the translational and rotational acceleration vectors, given the force vector $\boldsymbol{F}$ and torque vector $\boldsymbol{\tau}_A$
$$ \begin{aligned}
\boldsymbol{\alpha} & =\mathcal{I}_{C}^{-1}\left(\boldsymbol{\tau}_{A}-\boldsymbol{\omega}\times\mathcal{I}_{C}\boldsymbol{\omega}-\boldsymbol{c}\times\boldsymbol{F}\right)\\
\boldsymbol{a}_{A} & =\tfrac{1}{m}\boldsymbol{F}-\boldsymbol{c}\times\mathcal{I}_{C}^{-1}\left(\boldsymbol{c}\times\boldsymbol{F}\right)+\boldsymbol{c}\times\boldsymbol{\alpha}-\boldsymbol{\omega}\times(\boldsymbol{\omega}\times\boldsymbol{c})
\end{aligned} \tag{4} $$
Please note that (3) can be expanded out as $$\begin{aligned}\boldsymbol{\tau}_{A} & =\mathcal{I}_{C}\boldsymbol{\alpha}+\boldsymbol{c}\times m\left(\boldsymbol{a}_{A}+\boldsymbol{\alpha}\times\boldsymbol{c}+\boldsymbol{\omega}\times(\boldsymbol{\omega}\times\boldsymbol{c})\right)+\boldsymbol{\omega}\times\mathcal{I}_{C}\boldsymbol{\omega}\\
& =\boldsymbol{c}\times m\boldsymbol{a}_{A}+\mathcal{I}_{C}\boldsymbol{\alpha}+\boldsymbol{c}\times m\left(\boldsymbol{\alpha}\times\boldsymbol{c}\right)+\boldsymbol{c}\times m\left(\boldsymbol{\omega}\times(\boldsymbol{\omega}\times\boldsymbol{c})\right)+\boldsymbol{\omega}\times\mathcal{I}_{C}\boldsymbol{\omega}\\
& =\boldsymbol{c}\times m\boldsymbol{a}_{A}+\underbrace{\mathcal{I}_{C}\boldsymbol{\alpha}-\boldsymbol{c}\times m\left(\boldsymbol{c}\times\boldsymbol{\alpha}\right)}_{\mathcal{I}_{A}\boldsymbol{\alpha}}+\boldsymbol{\omega}\times m\left(\boldsymbol{c}\times(\boldsymbol{\omega}\times\boldsymbol{c})\right)+\boldsymbol{\omega}\times\mathcal{I}_{C}\boldsymbol{\omega}\\
\boldsymbol{\tau}_{A} & =\boldsymbol{c}\times m\boldsymbol{a}_{A}+\mathcal{I}_{A}\boldsymbol{\alpha}+\boldsymbol{\omega}\times\mathcal{I}_{A}\boldsymbol{\omega}
\end{aligned}
\tag{5}$$
which is used to produce the 6-vector form of the Newton-Euler equations of motion
$$\begin{bmatrix}\boldsymbol{F}\\
\boldsymbol{\tau}_{A}
\end{bmatrix}=\begin{bmatrix}m & \text{-}m[\boldsymbol{c}\times]\\
m[\boldsymbol{c}\times] & \mathcal{I}_{A}
\end{bmatrix}\begin{bmatrix}\boldsymbol{a}_{A}\\
\boldsymbol{\alpha}
\end{bmatrix}+\begin{bmatrix}\boldsymbol{\omega}\times m(\boldsymbol{\omega}\times\boldsymbol{c})\\
\boldsymbol{\omega}\times\mathcal{I}_{A}\boldsymbol{\omega}
\end{bmatrix} \tag{6} $$ where $$ [\boldsymbol{c}\times] = \pmatrix{0 & -c_z & c_y \\ c_z & 0 & -c_x \\ -c_y & c_x & 0}$$ is the 3×3 skew-symmetric cross-product matrix operator, and $\mathcal{I}_{A}=\mathcal{I}_{C}-m[\boldsymbol{c}\times][\boldsymbol{c}\times]$ is the mass moment of inertia tensor summed about point A produced by the parallel axis theorem in vector form.
The inverse of (6) is a bit awkward as it involves both $\mathcal{I}_C$ and $\mathcal{I}_A$ at the same time
$$\begin{bmatrix}\boldsymbol{a}_{A}\\
\boldsymbol{\alpha}
\end{bmatrix}=\begin{bmatrix}\tfrac{1}{m}-[\boldsymbol{c}\times]\mathcal{I}_{C}^{-1}[\boldsymbol{c}\times] & \mathcal{I}_{C}^{-1}[\boldsymbol{c}\times]\\
-[\boldsymbol{c}\times]\mathcal{I}_{C}^{-1} & \mathcal{I}_{C}^{-1}
\end{bmatrix}\left(\begin{bmatrix}\boldsymbol{F}\\
\boldsymbol{\tau}_{A}
\end{bmatrix}-\begin{bmatrix}\boldsymbol{\omega}\times m(\boldsymbol{\omega}\times\boldsymbol{c})\\
\boldsymbol{\omega}\times\mathcal{I}_{A}\boldsymbol{\omega}
\end{bmatrix}\right) \tag{7}$$