The electric conductivity in the Drude model according to Wikipedia is \begin{align*} \sigma&=\frac{n q^2\tau}{m}. \end{align*} I'm trying to derive this from the Boltzmann equation in the relaxation time approximation, \begin{align*} \frac{\partial f}{\partial t}+\boldsymbol{v}\cdot\frac{\partial f_{}}{\partial \boldsymbol{r}}+\boldsymbol{F}\cdot\frac{\partial f}{\partial \boldsymbol{p}}&=-\frac{f-f_{\text{eq}}}{\tau}, \end{align*} where $f$ is the probability distribution, $f_{\text{eq}}$ is the equilibrium distribution, $\tau$ is the relaxation time, and $\boldsymbol{E}=\boldsymbol{F}/q$ is the electric field. Assuming a stationary situation and to first order in the electric field, this reduces to \begin{align*} f(\boldsymbol{p})=f_{\text{eq}}({p})-\tau q\boldsymbol{E}\cdot \boldsymbol{\nabla}_{\boldsymbol{p}} f_{\text{eq}}({p}). \end{align*} I use that the electrons obey Fermi-Dirac statistics in the low-temperature limit, \begin{align*} f_{\text{eq}}({p})=\frac{2}{h^3}H\left(\epsilon_F-p^2/2m\right), \end{align*} where $H$ is the Heaviside function, and the Fermi energy $\epsilon_F$ is given by the normalization condition using the density $n$, \begin{align*} n&=\int \text{d}^3p\ f_{\text{eq}}({p})=\frac{8\pi}{3h^3}\left(2m\epsilon_F\right)^{3/2} = \frac{8\pi}{3h^3}p_F^3 , \end{align*} where I let $p_F=\sqrt{2m\epsilon_F}$. This gives \begin{align*} f(\boldsymbol{p})=f_{\text{eq}}({p})+\frac{2\tau q}{mh^3}\boldsymbol{E}\cdot\boldsymbol{p} \ \delta\left(\epsilon_F-p^2/2m\right). \end{align*}
Now, the electric current is, using this property of the Dirac delta, \begin{align*} \boldsymbol{J}&=\frac{q}{m}\langle \boldsymbol{p}\rangle=\frac{2\tau q^2}{m^2h^3}\int\text{d}^3p\ (\boldsymbol{E}\cdot\boldsymbol{p}) \boldsymbol{p} \ \delta\left(\epsilon_F-p^2/2m\right)=\frac{2\tau q^2}{m^2h^3}\int\text{d}^3p\ (\boldsymbol{E}\cdot\boldsymbol{p}) \boldsymbol{p} \frac{\delta\left(p-p_F\right)}{\left|-p_F/m\right|}. \end{align*} The Dirac delta distribution further reduces this to the surface integral over a sphere, and using the expression for $n$ from before, I get \begin{align*} \boldsymbol{J}&=\frac{2\tau q^2}{mh^3}\frac{1}{p_F}\int_{p=p_F} p_F^2\boldsymbol{E}\text{d}S=\frac{2\tau q^2}{mh^3}p_F\boldsymbol{E}4\pi p_F^2=\frac{3nq^2\tau }{m}\boldsymbol{E}=\sigma\boldsymbol{E}, \end{align*} which is a factor $3$ off compared to the Drude model. I redid this calculation a few times and can't find anything off, so help is appreciated!