Lets look at the equations
Euler Equations of Motion
The Euler equations governing the rotational motion of a rigid body in the body frame are:
\begin{align}
I_1 \dot{\omega}_1 - (I_2 - I_3) \omega_2 \omega_3 &= 0, \\
I_2 \dot{\omega}_2 - (I_3 - I_1) \omega_3 \omega_1 &= 0, \\
I_3 \dot{\omega}_3 - (I_1 - I_2) \omega_1 \omega_2 &= 0.
\end{align}
where $~( I_1, I_2, I_3 )~$ are the principal moments of inertia, and $~( \omega_1, \omega_2, \omega_3 )~$ are the angular velocity components in the body frame.
Linearization for Small Perturbations
Assuming that $~\omega_1 ~, \omega_2 ~$ are small perturbations around a dominant rotation about the third principal axis, with
$$I_3 \dot{\omega}_3 =0\quad\Rightarrow\quad
\omega_3 = \Omega, \quad \text{(constant)}
$$
and linearize the first two equations:
\begin{align}
I_1 \dot{\omega}_1 &= (I_2 - I_3) \Omega \omega_2, \\
I_2 \dot{\omega}_2 &= (I_3 - I_1) \Omega \omega_1.
\end{align}
Matrix Form and Eigenvalues
Writing in matrix form:
$$
\begin{bmatrix} I_1 & 0 \\ 0 & I_2 \end{bmatrix}
\begin{bmatrix} \dot{\omega}_1 \\ \dot{\omega}_2 \end{bmatrix}
=
\begin{bmatrix} 0 & (I_2 - I_3) \Omega \\ (I_3 - I_1) \Omega & 0 \end{bmatrix}
\begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix}.
$$
Dividing by the moments of inertia:
$$
\begin{bmatrix} \dot{\omega}_1 \\ \dot{\omega}_2 \end{bmatrix}
=
\begin{bmatrix} 0 & \frac{I_2 - I_3}{I_1} \Omega \\ \frac{I_3 - I_1}{I_2} \Omega & 0 \end{bmatrix}
\begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix}.
$$
To find the characteristic equation, we solve:
$$
\det \begin{bmatrix} -\lambda & \frac{I_2 - I_3}{I_1} \Omega \\ \frac{I_3 - I_1}{I_2} \Omega & -\lambda \end{bmatrix} = 0.
$$
Expanding the determinant:
$$
\lambda^2 - \left( \frac{(I_2 - I_3)(I_3 - I_1)}{I_1 I_2} \right) \Omega^2 = 0.
$$
Solving for $~ \lambda ~$:
$$
\lambda = \pm \Omega \sqrt{\frac{(I_2 - I_3)(I_3 - I_1)}{I_1 I_2}}.
$$
Stability Analysis
- If $~(I_2 - I_3)(I_3 - I_1) > 0 ~$, then $~ \lambda ~$ is real, leading to exponential growth or decay (unstable rotation).
- If $~ (I_2 - I_3)(I_3 - I_1) < 0 ~$, then $~ \lambda ~$ is purely imaginary, leading to oscillations (stable rotation).
This explains why rotation about the largest or smallest principal inertia axis is stable, while rotation about the intermediate axis is unstable (the Dzhanibekov ( Tennis Racket ) Theorem).
for the earth
The Earth is an oblate spheroid, meaning $~I_3 > I_1 \approx I_2 $ leading to oscillations (stable rotation).