Is it possible to derive the matrix: $$\Lambda=\begin{pmatrix} \gamma & -\beta\gamma \\ -\beta\gamma & \gamma \end{pmatrix}$$ From the condition: $$\Lambda g\Lambda^T=g \ \ \ \ g=\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$ I couldn't find this way of deriving the Lorentz transformations online and also couldn't think of a way to derive them myself. I want to see them derived that way because this condition is deeply connected with preserving the canonical form of the wave equations arising from the Lorentz gauge of the electromagnetic potentials. Here is my shot:
We assume: $$\Lambda=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \\ \Rightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix}=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -a & -c \\ b & d \end{pmatrix}=\begin{pmatrix} -a^2+b^2 & -ac+bd \\ -ac+bd & -c^2+d^2 \end{pmatrix}=\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \\ \Rightarrow \begin{cases} a^2-b^2=1 \\ d^2-c^2=1 \\ ac-bd=0 \end{cases}$$ Where do I go from here?