Work done by an external force $F$ upon a particle displacing from point 1 to point 2 is defined as $$ W_{12} = \int_1^2 F \cdot dr \, .$$
Kinetic energy and work-energy theorem: According to Newton's second law, $F = m dv/dt$ and hence \begin{align} \mathbf{F} \cdot d\mathbf{r} & = m \frac{d\mathbf{v}}{dt} \cdot d\mathbf{r} = m \frac{d\mathbf{v}}{dt} \cdot \mathbf{v}dt \\ (\text{this line}) \qquad & = m \frac{d}{dt} \left[ \frac{1}{2} \mathbf{v}\cdot \mathbf{v} \right] dt \\ & = d \left[ \frac{1}{2} m v^2 \right] \end{align}
This is a lesson on work-energy theorem in classical mechanics.