6

Consider a quantum theory $$\mathcal{L}(\phi^a) = \mathcal{L_{kin}}(\phi^a)-V(\phi^a),\tag{11.10}$$ depending on any type of fields $\phi^a$. The VEV of this theory are constant fields $\phi_0^a$ such that $V(\phi^a)$ is minimized and if some continuous symmetry of $\mathcal{L}$ is broken in the VEV we know that due to Goldstone theorem $$\begin{equation} \left(\frac{\partial^2}{\partial \phi^a \partial \phi^b}V\right)_{\phi_0} \end{equation}\tag{11.11}$$ must have some zero eigenvalues. This is proved in chapter 11.1 of Peskin & Schroeder. What I don't understand is the claim that this is true only for classical theory or only at tree-level.

The quantum version of Goldstone theorem takes into account the effective potential $V_{eff}$ and the claim now is that for a continuous broken symmetry it's
$$\begin{equation} \left(\frac{\partial^2}{\partial \phi^a \partial \phi^b}V_{eff}\right)_{\phi_0} \end{equation}\tag{p.388}$$ that has at least one zero eigenvalue. Where does the reasoning with the potential $V$ fail (i.e. why do we need to introduce the effective action $\Gamma$?) It seems to me that the proof of Goldstone theorem should work for both classical and quantum potential.

Qmechanic
  • 220,844
Alex
  • 431
  • 2
  • 9

1 Answers1

3

OP asks a good question about the interplay between the classical and the quantum theory in Goldstone's theorem. In this answer we review Goldstone's theorem following Refs. 1 & 2.

  1. The typical starting point is an (infinitesimal) zero-mode quasi-symmetry transformation $$\delta\phi^{\alpha}(x)~=~\epsilon c^{\alpha}{}_{\beta}\overline{\phi^{\beta}}, \qquad \delta\widetilde{\phi}^{\alpha}(k)~=~(2\pi)^d\delta^d(k)\epsilon c^{\alpha}{}_{\beta}\overline{\phi^{\beta}},\tag{1} $$ of the classical action $$S_V[\phi]~:=~\int_V\! d^dx~{\cal L}$$ (where we assume that the Lagrangian density ${\cal L}(\phi(x),\partial\phi(x))$ has no explicit $x$-dependence)$^1$: $$\begin{align}0~\sim~\delta S_V[\phi]~\sim~& \int_V\! d^dx~\frac{\delta S[\phi]}{\delta\phi^{\alpha}(x)}\delta\phi^{\alpha}(x)\cr ~\stackrel{V=\mathbb{R}^d}{=}&~\int\! \frac{d^dk}{(2\pi)^d}~\frac{\delta S[\phi]}{\delta\widetilde{\phi}^{\alpha}(k)}\delta\widetilde{\phi}^{\alpha}(k).\end{align}\tag{2}$$ Here we have introduced the spacetime-averaged quantity $$ \overline{f(\phi)}~:=~\frac{1}{|V|}\int_V\! d^dx~f(\phi(x))\tag{3} $$ of a spacetime region $V\subseteq\mathbb{R}^d$.

  2. Now the main point is that the 1PI quantum effective action$^2$ $\Gamma_V[\phi_{\rm cl}]$ inherits$^3$ the zero-mode quasi-symmetry (2) of the classical action $$\begin{align}0~\stackrel{(2)}{\sim}~\delta \Gamma_V[\phi_{\rm cl}]~\sim~& \int_V\! d^dx~\frac{\delta \Gamma_V[\phi_{\rm cl}]}{\delta\phi_{\rm cl}^{\alpha}(x)}\delta\phi_{\rm cl}^{\alpha}(x)\cr ~\stackrel{V=\mathbb{R}^d}{=}&~\int\! \frac{d^dk}{(2\pi)^d}~\frac{\delta \Gamma_V[\phi_{\rm cl}]}{\delta\widetilde{\phi}_{\rm cl}^{\alpha}(k)}\delta\widetilde{\phi}_{\rm cl}^{\alpha}(k).\end{align}\tag{4}$$

  3. Functional differentiation then yields$^4$ $$0~\stackrel{(4)}{=}~ \int_V\! d^dx~\frac{\delta^2 \Gamma_V[\phi_{\rm cl}]}{\delta\phi_{\rm cl}^{\beta}(x^{\prime})\delta\phi_{\rm cl}^{\alpha}(x)}c^{\alpha}{}_{\gamma}\underbrace{\overline{\phi_{\rm cl}^{\gamma}}}_{=\overline{\langle\phi^{\gamma}\rangle_J}}+\underbrace{\frac{\delta \Gamma_V[\phi_{\rm cl}]}{\delta\phi_{\rm cl}^{\alpha}(x^{\prime})}}_{=-J_{\alpha}(x^{\prime})\approx 0}c^{\alpha}{}_{\beta}\frac{1}{|V|} .\tag{5}$$ The Fourier transform reads: $$\frac{\delta^2 \Gamma_V[\phi_{\rm cl}]}{\delta\widetilde{\phi}_{\rm cl}^{\beta}(k^{\prime})\delta\widetilde{\phi}_{\rm cl}^{\alpha}(0)}\underbrace{\overline{c^{\alpha}{}_{\gamma}\langle\phi^{\gamma}\rangle_{J=0}}}_{\neq 0}~\stackrel{(5)}{\approx}~0.\tag{6}$$

  4. Let us now rename one of the (possible several) Goldstone fields as $\pi:=c^{\alpha}{}_{\beta}\phi^{\beta}$ with non-zero VEV $$\overline{\langle \pi\rangle_{J=0}}~\neq~ 0.\tag{7}$$

  5. It follows from eqs. (6) & (7) that the Hessian $$\left.\frac{\delta^2\Gamma[\phi_{\rm cl}]}{\delta \widetilde{\pi}_{\rm cl}(k_1)\delta\widetilde{\pi}_{\rm cl}(k_2)}\right|_{k_1=0=k_2}~\stackrel{(6)+(7)}{=}~0\tag{8}$$ has a zero, or its inverse$^5$, the Fourier-transformed connected propagator/2-point function $$\langle\widetilde{\pi}(k_1)\widetilde{\pi}(k_2)\rangle^c~\stackrel{(8)}{\propto}~\frac{1}{k_1^2}\delta^4(k_1\!+\!k_2)\tag{9}$$ has a pole, i.e. $\pi$ is massless, thereby proving the Goldstone theorem. $\Box$

References:

  1. M.E. Peskin & D.V. Schroeder, An Intro to QFT, 1995; Section 11.1 p. 351-352 + Section 11.6 p. 388.

  2. S. Weinberg, Quantum Theory of Fields, Vol. 2, 1995; Section 19.2 p. 167-168.

  3. S. Weinberg, Quantum Theory of Fields, Vol. 2, 1996; Section 16.4 p. 77 + Section 17.2 p. 84.


$^1$ Notation: The $\sim$ symbol means equality modulo boundary terms. The $\approx$ symbol means equality modulo eqs. of motion.

$^2$ At tree-level/zeroth order in $\hbar$, the quantum effective action $\Gamma_V[\phi_{\rm cl}]$ is the classical action $S_V[\phi_{\rm cl}]$, cf. e.g. eq. (12) in my Phys.SE answer here.

Much of the construction can equivalently be reformulated in terms of the quantum effective potential density $$ {\cal V}_{\rm eff}(\overline{\phi_{\rm cl}})~:=~-\frac{1}{|V|}\Gamma_V[\phi_{\rm cl}\!=\!\overline{\phi_{\rm cl}}]. \tag{10} $$

$^3$ More generally, the generating functional $W_{c,V}[J]$ of connected diagrams and the 1PI quantum effective action $\Gamma[\phi_{\rm cl}]$ inherits affine quasi-symmetries of the classical action $S_V[\phi]$ and the path integral measure, cf. e.g. Ref. 3. In the present case the sources transform as $$ \delta J_{\alpha}(x)~=~-\epsilon \overline{J_{\beta}} c^{\beta}{}_{\alpha}, \qquad \delta\widetilde{J}_{\alpha}(k)~=~-(2\pi)^d\delta^d(k)\epsilon \overline{J_{\beta}} c^{\beta}{}_{\alpha},\tag{11} $$ and the classical fields as $$\delta\phi_{\rm cl}^{\alpha}(x)~=~\epsilon c^{\alpha}{}_{\beta}\overline{\phi_{\rm cl}^{\beta}}, \qquad \delta\widetilde{\phi}_{\rm cl}^{\alpha}(k)~=~(2\pi)^d\delta^d(k)\epsilon c^{\alpha}{}_{\beta}\overline{\phi_{\rm cl}^{\beta}}.\tag{12} $$

$^4$ Recall that $\phi_{\rm cl}^{\alpha}=\langle \phi^{\alpha}\rangle_J$, cf. e.g. eq. (4) in my Phys.SE answer here.

$^5$ See e.g. eq. (8) in my Phys.SE answer here.

Qmechanic
  • 220,844