0

I am looking for accurate drawings of the electric and magnetic field lines in three situations:

  1. The electric field lines formed between a positive point charge and negative point charge. (i.e. the field lines associated with an electric dipole).
  2. The magnetic field lines formed between two parallel wires when the electrical currents are, a) flowing in the same direction, b) flowing in the opposite direction.

The drawings need only show the field lines in the plane and in the case of 2a and 2b the wires should be perpendicular to the plane.

The shape of the field lines in the all the drawings I have found using a search are similar in appearance but they aren't all identical. I would really like to know the true or ideal shape of the field lines. Thanks in advance.

Qmechanic
  • 220,844

2 Answers2

4

$\newcommand{\bl}[1]{\boldsymbol{#1}} \newcommand{\e}{\bl=} \newcommand{\p}{\bl+} \newcommand{\m}{\bl-} \newcommand{\mb}[1]{\mathbf {#1}} \newcommand{\mc}[1]{\mathcal {#1}} \newcommand{\mr}[1]{\mathrm {#1}} \newcommand{\mf}[1]{\mathfrak{#1}} \newcommand{\gr}{\bl>} \newcommand{\les}{\bl<} \newcommand{\greq}{\bl\ge} \newcommand{\leseq}{\bl\le} \newcommand{\il}[1]{$\:#1\:$} \newcommand{\plr}[1]{\left(#1\right)} \newcommand{\blr}[1]{\left[#1\right]} \newcommand{\clr}[1]{\left\{#1\right\}} \newcommand{\vlr}[1]{\left\vert#1\right\vert} \newcommand{\Vlr}[1]{\left\Vert#1\right\Vert} \newcommand{\lara}[1]{\left\langle#1\right\rangle} \newcommand{\lav}[1]{\left\langle#1\right|} \newcommand{\vra}[1]{\left|#1\right\rangle} \newcommand{\lavra}[2]{\left\langle#1|#2\right\rangle} \newcommand{\lavvra}[3]{\left\langle#1\right|#2\left|#3\right\rangle} \newcommand{\vp}{\vphantom{\dfrac{a}{b}}} \newcommand{\Vp}[1]{\vphantom{#1}} \newcommand{\hp}[1]{\hphantom{#1}} \newcommand{\tl}[1]{\tag{#1}\label{#1}}$

ANSWER$\bl{\m01}$

(2.b) The magnetic field lines formed between two parallel wires when the electrical currents are flowing in the opposite direction.

The differential equation to be solved is \begin{equation} \dfrac{\mr dy}{\mr dx} \e \dfrac{B_y\plr{x,y}}{B_x\plr{x,y}} \tl{01} \end{equation} By a first glance it seems to be difficult or may be impossible to succeed separation of the used variables $\:\plr{x,y}$. We will solve this equation by a proper change of variables. The new variables are \begin{equation} u \e \tan\theta_{\mr A} \,,\qquad v \e \tan\theta_{\mr B} \tl{02} \end{equation} where $\:\plr{\theta_{\mr A},\theta_{\mr B}}\:$ the angles shown in Figure-01 .

Using the geometry of the problem we'll transform the differential equation \eqref{01} with respect to $\:\plr{x,y}\:$ to a differential equation with respect to $\:\plr{ u, v}$. The new differential equation is separable and we note a priori that its solution yields the result \begin{equation} \sin\theta_{\mr B} \e \lambda \sin\theta_{\mr A} \nonumber \end{equation} where $\:\lambda\:$ a constant factor. To each permissible value of $\:\lambda\:$ there corresponds a magnetic field line.

At first from the geometry of the problem we have \begin{equation} \plr{x \m a}\tan\theta_{\mr B} \e y \e \plr{x \p a}\tan\theta_{\mr A} \nonumber \end{equation} or \begin{equation} \plr{x \m a} v \e y \e \plr{x \p a} u \tl{03} \end{equation} so \begin{equation} x \e \dfrac{\tan\theta_{\mr B}\p\tan\theta_{\mr A}}{\tan\theta_{\mr B}\m\tan\theta_{\mr A}}\, a \,,\qquad y \e \dfrac{2\tan\theta_{\mr B} \tan\theta_{\mr A}}{\tan\theta_{\mr B} \m \tan\theta_{\mr A}}\, a \tl{04} \end{equation} or \begin{equation} x \e \plr{\dfrac{v\p u}{v\m u}} a \,,\qquad y \e \plr{\dfrac{2\,v\, u}{v \m u}} a \tl{05} \end{equation} From \eqref{05} \begin{equation} \mr dx \e 2\,\dfrac{v\mr du\m u\mr d v}{\plr{v\m u}^2}\, a \,,\qquad \mr dy \e 2\,\dfrac{v^2\mr du\m u^2\mr d v}{\plr{v\m u}^2}\, a \tl{06} \end{equation} From \eqref{06} the left hand side of \eqref{01} is transformed as follows \begin{equation} \dfrac{\mr dy}{\mr dx} \e \dfrac{v^2\mr du\m u^2\mr d v}{v\mr du\m u\mr d v} \tl{07} \end{equation} For the transformation of the right hand side of \eqref{01} we have at first, see Figure-01, \begin{align} B_x & \e \plr{B_{\mr A}}_x\p \plr{B_{\mr B}}_x \e \dfrac{\mu_0 \mr I}{2\pi}\plr{\dfrac{\sin\theta_{\mr A}}{\mr{PA}} \m \dfrac{\sin\theta_{\mr B}}{\mr{PB}}} \tl{08a}\\ B_y & \e \plr{B_{\mr A}}_y\p \plr{B_{\mr B}}_y\e \dfrac{\mu_0 \mr I}{2\pi}\plr{\dfrac{\cos\theta_{\mr B}}{\mr{PB}} \m \dfrac{\cos\theta_{\mr A}}{\mr{PA}}} \tl{08b} \end{align} so \begin{equation} \dfrac{B_y}{B_x} \e \dfrac{\plr{\dfrac{\cos\theta_{\mr B}}{\mr{PB}} \m \dfrac{\cos\theta_{\mr A}}{\mr{PA}}}}{\plr{\dfrac{\sin\theta_{\mr A}}{\mr{PA}} \m \dfrac{\sin\theta_{\mr B}}{\mr{PB}}}} \tl{09} \end{equation} From the geometry of the problem \begin{equation} \mr{PA} \e \dfrac{y}{\sin\theta_{\mr A}} \,,\qquad \mr{PB} \e \dfrac{y}{\sin\theta_{\mr B}} \tl{10} \end{equation} and \eqref{09} yields \begin{equation} \begin{split} \dfrac{B_y}{B_x} & \e \dfrac{\plr{\sin\theta_{\mr B}\cos\theta_{\mr B} \m \sin\theta_{\mr A}\cos\theta_{\mr A}}}{\plr{\sin^2\theta_{\mr A} \m \sin^2\theta_{\mr B}}}\\ &\e \dfrac{\plr{\dfrac{\tan\theta_{\mr B}}{\cos^2\theta_{\mr A}}\m{\dfrac{\tan\theta_{\mr A}}{\cos^2\theta_{\mr B}}}}}{\plr{\dfrac{\tan^2\theta_{\mr A}}{\cos^2\theta_{\mr B}}\m{\dfrac{\tan^2\theta_{\mr B}}{\cos^2\theta_{\mr A}}}}}\\ & \e \dfrac{\tan\theta_{\mr B}\plr{1\p\tan^2\theta_{\mr A}}\m\tan\theta_{\mr A}\plr{1\p\tan^2\theta_{\mr B}}}{\tan^2\theta_{\mr A}\plr{1\p\tan^2\theta_{\mr B}}\m\tan^2\theta_{\mr B}\plr{1\p\tan^2\theta_{\mr A}}} \\ & \e \dfrac{\tan\theta_{\mr A}\tan\theta_{\mr B}\m 1}{\tan\theta_{\mr A}\p\tan\theta_{\mr B}}\e\m\dfrac{1}{\tan\plr{\theta_{\mr A}\p\theta_{\mr B}}}\e \tan\blr{\plr{\theta_{\mr A}\p\theta_{\mr B}}\m\dfrac{\pi}{2}}\\ \end{split} \tl{11} \end{equation} Replacing $\:\tan\theta_{\mr A},\tan\theta_{\mr B}\:$ with $\:u,v\:$ respectively \begin{equation} \dfrac{B_y}{B_x} \e \dfrac{u\,v \m 1}{u \p v} \tl{12} \end{equation} Combining \eqref{01}, \eqref{07} and \eqref{12} we have the differential equation in terms of the new variables $\:u,v$ \begin{equation} \dfrac{v^2\mr du\m u^2\mr d v}{v\mr du\m u\mr d v}\e \dfrac{u\,v \m 1}{u \p v} \tl{13} \end{equation} or \begin{equation} \dfrac{\mr du}{u\plr{1\p u^2}} \e \dfrac{\mr dv}{v\plr{1\p v^2}} \tl{14} \end{equation} that is \begin{equation} \dfrac{\mr d u^2}{ u^2}\m\dfrac{\mr d\plr{1\p u^2}}{\plr{1\p u^2}} \e \dfrac{\mr d v^2}{ v^2}\m\dfrac{\mr d\plr{1\p v^2}}{\plr{1\p v^2}} \tl{15} \end{equation} which integrated yields \begin{equation} \ln\plr{\dfrac{u^2}{1\p u^2}} \e \ln\plr{\dfrac{v^2}{1\p v^2}}\p \texttt{constant} \tl{16} \end{equation} But \begin{equation} \dfrac{u^2}{1\p u^2} \e \dfrac{\tan^2\theta_{\mr A}}{1\p \tan^2\theta_{\mr A}}\e \sin^2\theta_{\mr A}\,,\quad \dfrac{v^2}{1\p v^2} \e \dfrac{\tan^2\theta_{\mr B}}{1\p \tan^2\theta_{\mr B}}\e \sin^2\theta_{\mr B} \tl{17} \end{equation} and equation \eqref{16} gives \begin{equation} \ln\plr{\sin^2\theta_{\mr A}} \e \ln\plr{\sin^2\theta_{\mr B}}\p \texttt{constant}^\prime \tl{18} \end{equation} Because of symmetry with respect to the $\:\mr x\m$axis we consider that $\:\theta_{\mr A},\theta_{\mr B} \bl\in \plr{0,\pi}\:$ so $\:\sin\theta_{\mr A},\sin\theta_{\mr B} \gr 0\:$ and from \eqref{18} \begin{equation} \boxed{\:\: \sin\theta_{\mr B} \e \lambda \sin\theta_{\mr A}\:\:\vp} \tl{19} \end{equation} where $\:\lambda\:$ a constant factor.

From equations \eqref{10} and \eqref{19} we have \begin{equation} \boxed{\:\: \dfrac{\mr{PA}}{\mr{PB}}\e \lambda\,, \quad \lambda \bl\in \mathbb R^{\p}\:\:\vp} \tl{20} \end{equation} that is

The magnetic field line corresponding to a positive factor $\:\lambda\:$ is the geometric locus of points $\:\mr P\:$ that see the edges of the straight segment $\:\mr{AB}\:$ with ratio $\:\lambda$. From geometry we know that these geometric loci are circles as shown in Figure-02.

In Figure-A details of the construction of a magnetic field line of $\lambda$-factor are shown.

Although we have proved that a magnetic field line is a perfect circle, we will give the parametric equations of this curve making use of equations \eqref{04} repeated here for convenience \begin{align} x_\theta\plr{\theta_{\mr A}} & \e \dfrac{\tan\theta_{\mr B}\p\tan\theta_{\mr A}}{\tan\theta_{\mr B}\m\tan\theta_{\mr A}}\, a \tl{21a}\\ y_\theta\plr{\theta_{\mr A}} & \e \dfrac{2\tan\theta_{\mr B} \tan\theta_{\mr A}}{\tan\theta_{\mr B} \m \tan\theta_{\mr A}}\, a \tl{21b} \end{align} In above equation we replace the angle $\:\theta_{\mr B}\:$ as function of the angle $\:\theta_{\mr A}\:$ according to \eqref{19} \begin{equation} \theta_{\mr B} \e \arcsin\plr{\lambda\sin\theta_{\mr A}} \tl{22} \end{equation} so the $\:{\color{red}{\bl{\theta_{\mr A}}}}\m$parametric equations for the magnetic field line of $\:{\color{blue}{\bl\lambda}}\m$factor are \begin{align} x_{\color{blue}{\bl\lambda}}\plr{{\color{red}{\bl{\theta_{\mr A}}}}} & \e \dfrac{\tan\blr{\arcsin\plr{{\color{blue}{\bl\lambda}}\sin{\color{red}{\bl{\theta_{\mr A}}}}}\vp}\p\tan{\color{red}{\bl{\theta_{\mr A}}}}}{\tan\blr{\arcsin\plr{{\color{blue}{\bl\lambda}}\sin{\color{red}{\bl{\theta_{\mr A}}}}}\vp}\m\tan{\color{red}{\bl{\theta_{\mr A}}}}}\, a \tl{23a}\\ y_{\color{blue}{\bl\lambda}}\plr{{\color{red}{\bl{\theta_{\mr A}}}}} & \e \dfrac{2\tan\blr{\arcsin\plr{{\color{blue}{\bl\lambda}}\sin{\color{red}{\bl{\theta_{\mr A}}}}}\vp}\tan{\color{red}{\bl{\theta_{\mr A}}}}}{\tan\blr{\arcsin\plr{{\color{blue}{\bl\lambda}}\sin{\color{red}{\bl{\theta_{\mr A}}}}}\vp}\m\tan{\color{red}{\bl{\theta_{\mr A}}}}}\, a \tl{23b}\\ \vp{\color{red}{\bl{\theta_{\mr A}}}} & \bl\in \plr{0,\pi}\,, \qquad {\color{blue}{\bl\lambda}}\bl\in \plr{0,\p\infty} \tl{23c} \end{align} Using above parametric equations the magnetic field lines for various values of $\:{\color{blue}{\bl\lambda}}\:$ are shown in Figure-03. This Figure is precisely identical to Figure-02.

enter image description here

enter image description here

enter image description here

enter image description here

VoulKons
  • 16,825
  • 2
  • 45
  • 73
2

$\require{\cancel} \newcommand{\bl}[1]{\boldsymbol{#1}} \newcommand{\e}{\bl=} \newcommand{\p}{\bl+} \newcommand{\m}{\bl-} \newcommand{\mb}[1]{\mathbf {#1}} \newcommand{\mc}[1]{\mathcal {#1}} \newcommand{\mr}[1]{\mathrm {#1}} \newcommand{\mf}[1]{\mathfrak{#1}} \newcommand{\gr}{\bl>} \newcommand{\les}{\bl<} \newcommand{\greq}{\bl\ge} \newcommand{\leseq}{\bl\le} \newcommand{\il}[1]{$\:#1\:$} \newcommand{\plr}[1]{\left(#1\right)} \newcommand{\blr}[1]{\left[#1\right]} \newcommand{\clr}[1]{\left\{#1\right\}} \newcommand{\vlr}[1]{\left\vert#1\right\vert} \newcommand{\Vlr}[1]{\left\Vert#1\right\Vert} \newcommand{\lara}[1]{\left\langle#1\right\rangle} \newcommand{\lav}[1]{\left\langle#1\right|} \newcommand{\vra}[1]{\left|#1\right\rangle} \newcommand{\lavra}[2]{\left\langle#1|#2\right\rangle} \newcommand{\lavvra}[3]{\left\langle#1\right|#2\left|#3\right\rangle} \newcommand{\vp}{\vphantom{\dfrac{a}{b}}} \newcommand{\Vp}[1]{\vphantom{#1}} \newcommand{\hp}[1]{\hphantom{#1}} \newcommand{\tl}[1]{\tag{#1}\label{#1}}$

ANSWER$\bl{\m02}$

The magnetic field lines from steady electric currents flowing in two parallel wires of infinite length.

In Figures Figure-04 and Figure-05 we have a system of two parallel wires $\:\texttt{A,B}\:$ with steady electric currents $\:\mr I_\texttt{A}\e \xi\,\mr I\:$ and $\:\mr I_\texttt{B}\e \eta\,\mr I \:$ respectively. The coefficients $\:\xi,\eta\:$ are real numbers. If $\:\xi\cdot\eta \gr 0\:$ the two currents are flowing in the same direction while if $\:\xi\cdot\eta \les 0\:$ the two currents are flowing in opposite directions.

Now we assert and we'll prove that :

If $\:\texttt P\:$ is a point on a magnetic field line and $\:p \e \mr{PA},\:q \e \mr{PB}\:$ are the variable lengths shown in Figures Figure-04 and Figure-05 then along this magnetic field line the following surprisingly enough simple equation is valid \begin{equation} p^\xi\, q^\eta \e \texttt{constant} \tl{A-01} \end{equation}

From Figure-05 we have \begin{align} p^2 & \e \mr{PA}^2 \e \plr{x \p a}^2 \p y^2 \tl{A-02a}\\ q^2 & \e \mr{PB}^2 \e \plr{x \m a}^2 \p y^2 \tl{A-02b} \end{align} so by \eqref{A-01} a magnetic field line satisfies implicitly the following equation \begin{equation} \blr{\plr{x \p a}^2 \p y^2\vp}^\xi\, \blr{\plr{x \m a}^2 \p y^2\vp}^\eta \e \texttt{constant} \tl{A-03} \end{equation} We'll use above equation to sketch the family of magnetic field lines for some special simple cases where the coefficients $\:\xi,\eta\:$ are integers.

enter image description here

enter image description here

enter image description here

enter image description here

enter image description here

enter image description here

enter image description here

enter image description here

enter image description here

$\bl{=\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!==\!=\!=\!=}$

APPENDIX : Proof of equation \eqref{A-01}

The magnetic field lines are plane curves obeying the differential equation \begin{equation} \dfrac{\mr dy}{\mr dx} \e \dfrac{B_y\plr{x,y}}{B_x\plr{x,y}} \tl{D-01} \end{equation} This equation was solved by a proper change of variables. The new variables are \begin{equation} p \e \mr{PA} \,,\qquad q \e \mr{PB} \tl{D-02} \end{equation} where $\:\plr{\mr{PA},\mr{PB}}\:$ the lengths of the straight segments shown in Figure-04 and Figure-05. Using the geometry of the problem the differential equation \eqref{D-01} with respect to $\:\plr{x,y}\:$ is transformed to a differential equation with respect to $\:\plr{p,q}$. Its solution is summarized to the surprisingly enough simple equation \begin{equation} p^\xi\, q^\eta \e \texttt{constant} \nonumber \end{equation} that is \begin{equation} \mr{PA}^\xi\cdot \mr{PB}^\eta\e\lambda\,,\quad \lambda \bl\in \mathbb R^{\p} \tl{D-03} \end{equation} At first from the geometry of the problem we have \begin{align} \plr{x \p a}^2 \p y^2 & \e \mr{PA}^2 \e p^2 \tl{D-03a}\\ \plr{x \m a}^2 \p y^2 & \e \mr{PB}^2 \e q^2 \tl{D-03b} \end{align} Subtracting above equations side by side we have \begin{equation} \plr{x \p a}^2 \m \plr{x \m a}^2 \e p^2 \m q^2 \quad \bl\implies \boxed{\:\:x \e \dfrac{p^2 \m q^2}{4a}\:\:} \tl{D-04} \end{equation} while adding them \begin{equation} \begin{split} & \plr{x \p a}^2 \p \plr{x \m a}^2 \p 2 y^2 \e p^2 \p q^2\: \bl\implies\: 2x^2 \p 2a^2 \p 2 y^2 \e p^2 \p q^2\: \bl\implies\\ & y^2 \e \dfrac{p^2 \p q^2 }{2}\m x^2 \m a^2\:\stackrel{\eqref{D-04}}{\bl\implies}\:y^2 \e \dfrac{p^2 \p q^2 }{2}\m \plr{\dfrac{p^2 \m q^2}{4a}}^2 \m a^2 \: \bl\implies\\ & y^2 \e \dfrac{p^2 \p q^2 }{2}\m \plr{\dfrac{p^2 \m q^2}{4a}}^2 \m a^2 \\ \end{split} \nonumber \end{equation} so \begin{equation} \boxed{\:\: y^2 \e \dfrac{8a^2\plr{p^2 \p q^2 }\m\plr{p^4 \p q^4\m 2p^2 q^2}\m 16a^4\vp}{ 16a^2\vp}\:\:} \tl{D-05} \end{equation} From \eqref{D-04} \begin{equation} \mr dx \e \dfrac{p\,{\color{blue}{\mr dp}}\m q\,{\color{blue}{\mr dq}}}{2a} \tl{D-06} \end{equation} From \eqref{D-05} \begin{equation} 32a^2 y\mr dy \e \plr{16a^2 p \m 4p^3\p 4q^2 p}{\color{blue}{\mr dp}} \p\plr{16a^2 q \m 4q^3\p 4p^2 q}{\color{blue}{\mr dq}} \nonumber \end{equation} so \begin{equation} \mr dy \e \dfrac{\plr{4a^2 p \m p^3\p q^2 p}{\color{blue}{\mr dp}} \p\plr{4a^2 q \m q^3\p p^2 q}{\color{blue}{\mr dq}}}{8a^2 y} \tl{D-07} \end{equation} From \eqref{D-06},\eqref{D-07} \begin{equation} \boxed{\:\:\dfrac{\mr dy}{\mr dx} \e \dfrac{\plr{4a^2 p \m p^3\p q^2 p\vp}{\color{blue}{\mr dp}} \p\plr{4a^2 q \m q^3\p p^2 q\vp}{\color{blue}{\mr dq}}}{4a\plr{p\,{\color{blue}{\mr dp}}\m q\,{\color{blue}{\mr dq}}\vp}y}\:\:} \tl{D-08} \end{equation} For the transformation of the right hand side of \eqref{D-01} we have at first, see Figure-05, \begin{align} B_x & \e \plr{B_{\mr A}}_x\p \plr{B_{\mr B}}_x \e \dfrac{\mu_0\,\mr I}{2\pi}\plr{\m\dfrac{\xi\sin\theta_{\mr A}}{\mr{PA}} \m \dfrac{\eta\sin\theta_{\mr B}}{\mr{PB}}} \tl{D-09a}\\ B_y & \e \plr{B_{\mr A}}_y\p \plr{B_{\mr B}}_y\e \dfrac{\mu_0\, \mr I}{2\pi}\plr{\hp\m\dfrac{\xi\cos\theta_{\mr A}}{\mr{PA}}\p\dfrac{\eta\cos\theta_{\mr B}}{\mr{PB}} } \tl{D-09b} \end{align} so \begin{equation} \dfrac{B_y}{B_x} \e \m\dfrac{\plr{\dfrac{\xi\cos\theta_{\mr A}}{\mr{PA}}\p\dfrac{\eta\cos\theta_{\mr B}}{\mr{PB}} }}{\plr{\dfrac{\xi\sin\theta_{\mr A}}{\mr{PA}}\p\dfrac{\eta\sin\theta_{\mr B}}{\mr{PB}} }} \e \m\dfrac{\plr{\xi\,q\cos\theta_{\mr A}\p \eta\,p\cos\theta_{\mr B}\vp}}{\plr{\xi\,q\sin\theta_{\mr A}\p \eta\,p\sin\theta_{\mr B}\vp}} \tl{D-10} \end{equation} Since for the trigonometric functions we have \begin{align} \cos\theta_{\mr A} \e \dfrac{x\p a}{\mr{PA}} \e \dfrac{\dfrac{p^2 \m q^2}{4a}\p a}{p}\quad &\bl\implies \cos\theta_{\mr A}\e\dfrac{p^2 \m q^2\p 4a^2}{4ap} \tl{D-11a}\\ \cos\theta_{\mr B} \e \dfrac{x\m a}{\mr{PB}} \e \dfrac{\dfrac{p^2 \m q^2}{4a}\m a}{q}\quad &\bl\implies\cos\theta_{\mr B}\e\dfrac{p^2 \m q^2\m 4a^2}{4aq} \tl{D-11b}\\ \sin\theta_{\mr A} \e \dfrac{y}{\mr{PA}}\quad &\bl\implies \sin\theta_{\mr A}\e\dfrac{y}{p} \tl{D-11c}\\ \sin\theta_{\mr B} \e \dfrac{y}{\mr{PB}}\quad &\bl\implies \sin\theta_{\mr B}\e\dfrac{y}{q} \tl{D-11d} \end{align} equation \eqref{D-10} yields \begin{equation} \boxed{\:\: \dfrac{B_y}{B_x}\e \dfrac{\plr{\xi\,q^4\m\eta\,p^4\m\xi q^2p^2\p\eta p^2q^2\m 4\xi a^2q^2\p 4\eta a^2 p^2\vp}}{4a\plr{\xi\, q^2\p \eta\, p^2\vp}y}\:\:} \tl{D-12} \end{equation} Using expressions \eqref{D-08},\eqref{D-12} the differential equation \eqref{D-01} is transformed as follows \begin{equation} \dfrac{\plr{4a^2 p \m p^3\p q^2 p\vp}{\color{blue}{\mr dp}} \p\plr{4a^2 q \m q^3\p p^2 q\vp}{\color{blue}{\mr dq}}}{\cancel{4a}\plr{p\,{\color{blue}{\mr dp}}\m q\,{\color{blue}{\mr dq}}\vp}\cancel{y}} \e \dfrac{\plr{\xi\,q^4\m\eta\,p^4\m\xi q^2p^2\p\eta p^2q^2\m 4\xi a^2q^2\p 4\eta a^2 p^2\vp}}{\cancel{4a}\plr{\xi\, q^2\p \eta\, p^2\vp}\cancel{y}} \nonumber \end{equation} that is \begin{equation} \dfrac{\plr{4a^2 p \m p^3\p q^2 p\vp}{\color{blue}{\mr dp}} \p\plr{4a^2 q \m q^3\p p^2 q\vp}{\color{blue}{\mr dq}}}{\plr{p{\color{blue}{\mr dp}}\m q{\color{blue}{\mr dq}}\vp}} \e \dfrac{\plr{\xi\,q^4\m\eta\,p^4\m\xi q^2p^2\p\eta p^2q^2\m 4\xi a^2q^2\p 4\eta a^2 p^2\vp}}{\plr{\xi\, q^2\p \eta\, p^2\vp}} \nonumber \end{equation} \begin{equation} \begin{split} &\overbrace{\blr{p\plr{\xi\,q^4\m\eta\,p^4\m\xi q^2p^2\p\eta p^2q^2\m 4\xi a^2q^2\p 4\eta a^2 p^2\vp} \m \plr{\xi\, q^2\p \eta\, p^2\vp} \plr{4a^2 p \m p^3\p q^2 p\vp}}}^{\m 8\xi a^2pq^2}{\color{blue}{\mr dp}}\e \\ &\underbrace{\blr{q\plr{\xi\,q^4\m\eta\,p^4\m\xi q^2p^2\p\eta p^2q^2\m 4\xi a^2q^2\p 4\eta a^2 p^2\vp} \p \plr{\xi\, q^2\p \eta\, p^2\vp} \plr{4a^2 q \m q^3\p p^2 q\vp}}}_{\p 8\eta a^2qp^2}{\color{blue}{\mr dq}}\\ \end{split} \nonumber \end{equation} so \begin{equation} \xi\dfrac{{\color{blue}{\mr dp}}}{p} \p \eta\dfrac{{\color{blue}{\mr dq}}}{q}\e 0 \tl{D-13} \end{equation} By integration of above equation we have proved equation \eqref{A-01} repeated here for convenience \begin{equation} p^\xi\, q^\eta \e \texttt{constant} \tl{D-14} \end{equation}
VoulKons
  • 16,825
  • 2
  • 45
  • 73