Which type of potentials lead to Kepler's second law "same area in same time"?
$$dA=\frac{1}{2} \vec{r} \times \vec{dr}.$$
$$\frac{dA}{dt}=c=\vec{r} \times \frac{\vec{dr}}{dt}=\vec{r} \times \dot{\vec{r}}. $$
Differentiating both sides we can get a statement on the force field
$\dot{\vec{r}} \times \ddot{\vec{r}}=0, m\dot{\vec{r}} \times m\ddot{\vec{r}}=0,m\ddot{\vec{r}} \times m\dddot{\vec{r}}=0$
I do not know how to proceed from here, however, I believe we should be able to say something on the potential field now since we have a statement on the force field. Perhaps something along the lines of
$\begin{bmatrix} F_x \\ F_y \\ F_z \end{bmatrix} \times \begin{bmatrix} \frac{d}{dt}F_x \\ \frac{d}{dt} F_y \\ \frac{d}{dt} F_z \end{bmatrix} = \begin{bmatrix} \frac{\partial \phi}{\partial x} \\ \frac{\partial \phi}{\partial y}\\ \frac{\partial \phi}{\partial z} \end{bmatrix} \times \begin{bmatrix} \frac{d}{dt}\frac{\partial \phi}{\partial x} \\ \frac{d}{dt} \frac{\partial \phi}{\partial y} \\ \frac{d}{dt} \frac{\partial \phi}{\partial z} \end{bmatrix} =0 $
Edit:
It was brought to my attention that the identity for dA should include a norm $dA=\frac{1}{2}||\vec{r} \times \vec{dr}||$
Applying the same derivative process
$\frac{d^2A}{dt^2}=\frac{1}{2}\frac{1}{||(\vec{r} \times \dot{\vec{r}}||} \frac{d}{dt}(\vec{r} \times \dot{\vec{r}})\cdot (\vec{r} \times \dot{\vec{r}})$
$\frac{d^2A}{dt^2}=\frac{1}{2||(\vec{r} \times \dot{\vec{r}}||} (\dot{\vec{r}} \times \dot{\vec{r}} + \vec{r} \times \ddot{\vec{r}}) \cdot (\vec{r} \times \dot{\vec{r}})=\frac{1}{2||(\vec{r} \times \dot{\vec{r}}||} (\vec{r} \times \ddot{\vec{r}}) \cdot (\vec{r} \times \dot{\vec{r}})=0$
$(\vec{r} \times \ddot{\vec{r}}) \perp (\vec{r} \times \dot{\vec{r}})$
I do not know how to proceed from here