I have seen the following dispersion relation as a differential equation: $$ \frac{ \partial \mathbf{k} }{ \partial t } + \left( \mathbf{V}_{g} \cdot \nabla \right) \mathbf{k} = 0 \tag{1} $$ in the page number 135 of the textbook Holton, J. R., & Hakim, G. J. (2013). An introduction to dynamic meteorology (5th ed., Vol. 88). Amsterdam: Elsevier. , and also here: https://physics.stackexchange.com/a/381974/393802
But it does not make sense to me, so I am not sure it is a (propagated) typo or there is something I do not understand.
Let's follow the cited book and assume that we have a 2-dimensional wave and that the phase of the wave, $\phi$, is real. The wave number, $\mathbf{k}$ and the angular frequency, $\omega$, can be expressed as differential operations on the angular phase, $\phi$. The angular phase $\phi$ for a two dimensional wave can be expressed as $\phi = kx+ly- \omega t$, where $k$ and $l$ are the wave numbers in the $x$ and $y$ directions, respectively, and $\omega$ is the angular frequency. The wave vector is defined as $ \mathbf{k} = k \mathbf{i} + l \mathbf{j} $, So, we can get the wave vector from the angular phase by applying the spatial gradient: $$ \mathbf{k} = \nabla \phi = {\partial \phi \over \partial x} \mathbf{i} + {\partial \phi \over \partial y} \mathbf{j} \tag{2} $$ Or, in matrix notation and assuming that the gradient is a row vector: $$ \mathbf{k} = \nabla \phi = \left( {\partial \phi \over \partial x} , {\partial \phi \over \partial y}\right) \tag{3} $$
On the other hand we can get the angular frequency by applying the time derivative on the angular phase: $$ \omega = - {\partial \phi \over \partial t} \tag{4} $$
Now we can take the time derivative of 3 to get: $$ {\partial \mathbf{k} \over \partial t} = {\partial \over \partial t} \nabla \phi = \nabla {\partial \phi \over \partial t} = - \nabla \omega \tag{5} $$ where we have used 4 in the last step. That is to say: $$ {\partial \mathbf{k} \over \partial t} + \nabla \omega = 0 \tag{6} $$
We now recall that $\omega$ is a function of $\mathbf{k}$ (dispersion relation), id est, $\omega (x, y) = \omega (\mathbf{k} (x,y)) = \omega(k(x,y),l(x,y))$, so that we can rewrite the gradient of $\omega$ in "wavenmber coordinates" as: $$ \begin{align} \nabla \omega &= \left( {\partial \omega \over \partial x} , {\partial \omega \over \partial y}\right) \\ &= \left({\partial \omega \over \partial k} {\partial k \over \partial x} + {\partial \omega \over \partial l} {\partial l \over \partial x} , {\partial \omega \over \partial k} {\partial k \over \partial y} + {\partial \omega \over \partial l} {\partial l \over \partial y} \right) \\ &= \left( {\partial \omega \over \partial k} , {\partial \omega \over \partial l}\right) \left(\begin{array}{cc} \partial k \over \partial x & \partial k \over \partial y\\ \partial l \over \partial x & \partial l \over \partial y \end{array}\right) \\ &= \nabla _k \omega \cdot \nabla \mathbf{k} \end{align} \tag{7} $$ where $\nabla \mathbf{k}$ is the jacobian matrix of $\mathbf{k}$.
Replacing this into ec 6, gives: $$ \frac{ \partial \mathbf{k} }{ \partial t } + \nabla _k \omega \cdot \nabla \mathbf{k} = 0 \tag{8} $$
Recalling that the group velocity is $\mathbf{V}_{g} = \nabla _k \omega$: $$ \frac{ \partial \mathbf{k} }{ \partial t } + \mathbf{V}_{g} \cdot \nabla \mathbf{k} = 0 \tag{9} $$
This contrasts with eq. 1, because $\mathbf{V}_{g} \cdot \nabla \mathbf{k} \ne \left( \mathbf{V}_{g} \cdot \nabla \right) \mathbf{k}$
Or, at least, this is what I think. To see this, let $\mathbf{V}_{g} = (v_x, v_y)$. Then:
$$ \begin{align} \left( \mathbf{V}_{g} \cdot \nabla \right) \mathbf{k} &= \left[ ( v_x, v_y) \cdot \left( {\partial \over \partial x} , {\partial \over \partial y} \right) \right] \left( k, l \right) \\ &= \left(v_x {\partial \over \partial x} + v_y {\partial \over \partial y} \right) (k, l) \\ &= \left(v_x {\partial k \over \partial x} + v_y {\partial k \over \partial y}, v_x {\partial l \over \partial x} + v_y {\partial l \over \partial y} \right) \end{align} \tag{10} $$
In order to compare this with $\mathbf{V}_{g} \cdot \nabla \mathbf{k}$, recall that $\mathbf{V}_{g} = \nabla _k \omega = \left({\partial \omega \over \partial k}, {\partial \omega \over \partial l} \right) = ( v_x, v_y )$, so that the second line of eq. 9 is: $$ \begin{align} \mathbf{V}_{g} \cdot \nabla \mathbf{k} &= \nabla \omega \\ &= \left( {\partial \omega \over \partial x} , {\partial \omega \over \partial y}\right) \\ &= \left({\partial \omega \over \partial k} {\partial k \over \partial x} + {\partial \omega \over \partial l} {\partial l \over \partial x} , {\partial \omega \over \partial k} {\partial k \over \partial y} + {\partial \omega \over \partial l} {\partial l \over \partial y} \right) \\ &= \left({v_x} {\partial k \over \partial x} + {v_y} {\partial l \over \partial x} , {v_x} {\partial k \over \partial y} + {v_y} {\partial l \over \partial y} \right) \end{align} \tag{11} $$
Which is not the same as eq. 10 What am I missing?