$\renewcommand{\vec}{\boldsymbol}$ $\newcommand{\highlight}{\boxed}$
9.5.3 Velocity and Acceleration in a Rotating Coordinate System
Applying Eq. (9.8) to the position vector $\vec{r}$, we have $$\left(\frac{d\vec{r}}{dt}\right)_{in} = \left(\frac{d\vec{r}}{dt}\right)_{rot} + \vec\Omega\times\vec{r},$$ or $$\vec{v}_{in} = \vec{v}_{rot} + \vec\Omega\times\vec{r}$$ We can apply Eq. (9.8) once again to find the acceleration $\vec{a}_{rot}$ in the rotating coordinate system. We have
\begin{align} \left(\frac{d\vec{v}_{in}}{dt}\right)_{in} &= \highlight{\left(\frac{d\vec{v}_{in}}{dt}\right)_{rot}} + \vec\Omega\times\vec{v}_{in} \\ &= \left[\frac{d}{dt}(\vec{v}_{rot} + \vec\Omega\times\vec{r}\right]_{rot} + \vec\Omega\times(\vec{v}_{rot}+\vec\Omega\times\vec{r}) \\ &= \left(\frac{d\vec{v}_{rot}}{dt}\right)_{rot} + \vec\Omega\times\frac{d\vec{r}}{dt}_{rot} + \vec\Omega\times\vec{r}_{rot} + \vec\Omega\times(\vec{v}_{rot}+\vec\Omega\times\vec{r}) \\ &= \left(\frac{d\vec{v}_{rot}}{dt}\right)_{rot} + 2\vec\Omega\times\vec{v}_{rot} + \vec\Omega\times(\vec\Omega\times\vec{r}). \end{align} Expressing this in terms of the acceleration $\vec{a}_{in}$ and $\vec{a}_{rot}$, we have $$\vec{a}_{in} = \vec{a}_{rot} + 2\vec\Omega\times\vec{v}_{rot} + \vec\Omega\times(\vec\Omega\times\vec{r}).\tag{9.9}$$ The acceleration viewed in the rotating system is $$\vec{a}_{rot} = \vec{a}_{int} - 2\vec\Omega\times\vec{v}_{rot} - \vec\Omega\times(\vec\Omega\times\vec{r}).\tag{9.10}$$
I’m confused by the subscript of $rot$ and $in$, short for rotating frame and inertial frame respectively. When we calculate the acceleration in the inertial frame, on the left side of the equation, we need derivative the velocity vector which is seen by an observer in the rotating frame, why is the velocity vector equal to velocity vector in rotating frame plus $\vec\Omega$ cross position vector? I think the velocity vector in rotating frame is just equal to the velocity vector in inertial frame minus $\vec\Omega$ cross position vector.