I have been trying to get the analytical expression for the Wigner function of squeezed vacuum states. Using the characteristic function representation, the WF can be written as
$$W(\alpha)=\frac{1}{\pi}\int e^{\lambda^*\alpha-\lambda\alpha^*}\hat{C}(\lambda)d^2\lambda$$
Where $\hat{C}(\lambda)$ is the characteristic function defined as $\hat{C}(\lambda)=\mathrm{Tr}\lbrace \rho\hat{D}(\lambda)\rbrace=\langle\hat{D}(\lambda)\rangle$, with the displacement operator defined as $\hat{D}(\lambda)=\exp{(-|\lambda|^2/2)}\exp{(\lambda\hat{a}^\dagger)}\exp{(-\lambda^*\hat{a})}$.
Using the squeezed vacuum state, the characteristic function is
$$\hat{C}_{\xi}(\lambda)=\langle\xi|\hat{D}(\lambda)|\xi\rangle=\langle 0|\hat{S}^{\dagger}(\xi)\hat{D}(\lambda)\hat{S}(\xi)|0\rangle$$
Where $\hat{S}(\xi)=\exp{(\frac{1}{2}\xi^*\hat{a}^2-\frac{1}{2}\xi\hat{a}^{\dagger 2})}$ is the squeezed operator. I have seen that the transformation $\hat{S}^{\dagger}(\xi)\hat{D}(\lambda)\hat{S}(\xi)$ is equal to $\hat{D}(\lambda\mu+\lambda^*\nu)$, where $\mu,\nu$ are the elements of the similarity transformation of creation and annihilation operators using the squeezed operator, i.e., $\hat{a}^{'}=\hat{S}(\xi)\hat{a}\hat{S}^\dagger(\xi)=\mu\hat{a}+\nu\hat{a}^\dagger$ and $\hat{a}^{\dagger'}=\hat{S}(\xi)\hat{a}^\dagger\hat{S}^\dagger(\xi)=\nu^*\hat{a}+\mu\hat{a}^\dagger$.
Does anyone know how to proof this property?
$$\hat{S}^{\dagger}(\xi)\hat{D}(\lambda)\hat{S}(\xi)=\hat{D}(\lambda\mu+\lambda^*\nu)$$
Thanks in advance for any ideas!