If the principle of local thermodynamic equilibrium holds, you can define thermodynamic variables around the average local velocity $\overline{\mathbf{v}}(\mathbf{r},t)$ of the medium.
As an example, we can write the total kinetic energy of the microscopic particles in a "small" material volume as
$K^{tot} = \sum_i K_i = \sum_i \frac{1}{2} m_i \mathbf{v}_i \cdot \mathbf{v}_i = \sum_i \frac{1}{2} m_i (\overline{\mathbf{v}} + \mathbf{v}'_i ) \cdot (\overline{\mathbf{v}} + \mathbf{v}'_i ) = $
$ \qquad \qquad \qquad= \dfrac{1}{2} \underbrace{\left( \sum_i m_i \right)}_{= m} |\overline{\mathbf{v}}|^2 + \overline{\mathbf{v}} \cdot \sum_i m_i \mathbf{v}_i' + \sum_i \frac{1}{2} m_i |\mathbf{v}'_i|^2$,
and averaging this expression we get
$\overline{K^{tot}} = \overline{ \dfrac{1}{2} m |\overline{\mathbf{v}}|^2 } + \underbrace{\overline{ \overline{\mathbf{v}} \cdot \sum_i m_i \mathbf{v}_i' }}_{\overline{\mathbf{v}'} = \mathbf{0}} + \overline{ \sum_i \frac{1}{2} m_i |\mathbf{v}'_i|^2 } = K^{macro} + E^{int}$,
being the average total energy equal to the sum of:
- the macroscopic kinetic energy $K^{macro}$ of the closed material volume
- its internal energy $E^{int}$, related to the fluctuations
$\mathbf{v}'_i$, of the microscopic particles around the average
velocity, that can be related to thermodynamics variables bridging
kinetic theories with classical thermodynamics.
We can provide a more general qualitative definition of the temperature, if compared with the one you gave in your question
temperature is as a measure of the average kinetic energy of the particles, w.r.t. the local average (macroscopic) velocity.
Thus, in this sense, thermodynamic variables are not dependent on the reference frame.