It's quite immediate to see that when you write explicitly the definition for the Christoffel symbols, when contracting the first indices, you will obtain the following form:
$$
\Gamma^\mu_{\mu\nu}=\dfrac{1}{2}g^{\mu\sigma}\partial_\nu g_{\mu\sigma}=\dfrac{1}{2}\text{tr}(g^{-1}\partial_\nu g)
$$
Now, the following matrix identity can be exploited:
$$
\text{tr}(\ln A)=\ln(\text{det}A)
$$
Furthermore, if A turns out to be differentiable, then
$$
\dfrac{d}{d\lambda}\ln(\text{det}A)=\text{tr}\left(A^{-1}\dfrac{d}{d\lambda}A\right)
$$
so that at the end:
$$
\Gamma^\mu_{\mu\nu}=\dfrac{1}{2}\partial_\nu \ln(\text{det} \,g)=\partial_\nu \ln\sqrt{|{g|}}
$$