In the Wikipedia article on Verlet method, under the Velocity Verlet method, the first algorithm proposed uses half steps:
Calculate $\vec{v}\left(t + \tfrac12\,\Delta t\right) = \vec{v}(t) + \tfrac12\,\vec{a}(t)\,\Delta t$.
Calculate $\vec{x}(t + \Delta t) = \vec{x}(t) + \vec{v}\left(t + \tfrac12\,\Delta t\right)\, \Delta t$.
Derive $\vec{a}(t + \Delta t)$ from the interaction potential using $\vec{x}(t + \Delta t)$.
Calculate $\vec{v}(t + \Delta t) = \vec{v}\left(t + \tfrac12\,\Delta t\right) + \tfrac12\,\vec{a}(t + \Delta t)\Delta t$.
One sentence later it is mentioned that you may also eliminate the half steps.
I don't really get why one should use the half steps in the first place when the solution without half steps is trivially derived from the base equations:
$$\vec{x}(t + \Delta t) = \vec{x}(t) + \vec{v}(t)\, \Delta t + \frac{1}{2} \,\vec{a}(t) \Delta t^2$$ $$\vec{v}(t + \Delta t) = \vec{v}(t) + \frac{\vec{a}(t) + \vec{a}(t + \Delta t)}{2} \Delta t$$