I am trying to find the Field equation for
$$S = \int \sqrt{-g}dx^4[f(\phi)R + h(\phi)g^{\mu \nu}\nabla_{\mu}\phi\nabla_{\nu}\phi - V(\phi)$$
but I could not take the variation of $$\delta(\sqrt{-g}h(\phi)g^{\mu \nu}\nabla_{\mu}\phi\nabla_{\nu}\phi)$$
I know that $\delta(\sqrt{-g}) = -\frac{1}{2}\sqrt{-g}g_{\mu\nu}\delta g^{\mu\nu}$. We can also take $\delta h = \frac{\partial h}{\partial \phi}\delta \phi$.
We can separate the expression into five terms.
- $$\delta(\sqrt{-g})hg^{\mu \nu}\nabla_{\mu}\phi\nabla_{\nu}\phi$$
- $$\sqrt{-g}\delta h g^{\mu \nu}\nabla_{\mu}\phi\nabla_{\nu}\phi$$
- $$\sqrt{-g}h \delta(g^{\mu \nu})\nabla_{\mu}\phi\nabla_{\nu}\phi$$
- $$\sqrt{-g}h g^{\mu \nu}\nabla_{\mu}\delta(\phi)\nabla_{\nu}\phi$$
- $$\sqrt{-g}h g^{\mu \nu}\nabla_{\mu}\phi\nabla_{\nu}\delta(\phi)$$
So I have found
- $$(-\frac{1}{2}\sqrt{-g}hg_{\mu\nu}\nabla_{\beta}\phi\nabla^{\beta}\phi)\delta g^{\mu\nu}$$
- $$(\sqrt{-g}\nabla_{\mu}\phi\nabla^{\mu}\phi\frac{\partial h}{\partial \phi})\delta \phi$$
- $$(\sqrt{-g}h\nabla_{\mu}\phi\nabla_{\nu}\phi)\delta(g^{\mu \nu})$$
From $(4)$ and $(5)$ I obtain,
$$(4)+(5) = 2\sqrt{-g}h\nabla^{\mu}\phi \nabla_{\mu}\delta(\phi)$$
and by taking,
$$\nabla_{\mu}(h\delta\phi\nabla^{\mu}\phi)=\nabla_{\mu}h\nabla^{\mu}\phi\delta \phi+h\nabla_{\mu}(\delta\phi)\nabla^{\mu}+h\square\phi \delta\phi$$
$(4)+(5)$ becomes,
$$(4)+(5)=-2\sqrt{-g}[\nabla_{\mu}h\nabla^{\mu}\phi + \square\phi h]\delta\phi$$
So In summary I have found
$$\delta(\sqrt{-g}h(\phi)g^{\mu \nu}\nabla_{\mu}\phi\nabla_{\nu}\phi) = \sqrt{-g}\Big[\delta g^{\mu\nu}\big[-\frac{hg_{\mu\nu}}{2}\nabla_{\beta}\phi\nabla^{\beta}\phi+ h\nabla_{\mu}\phi\nabla_{\nu}\phi\big] + \delta \phi \big[\nabla_{\mu}\phi\nabla^{\mu}\phi\frac{\partial h}{\partial \phi} -2[\nabla_{\mu}h\nabla^{\mu}\phi + \square\phi h] \big]\Big]$$