4

Consider the following classical Lagrangian with an interaction between velocities:

$$\mathcal{L} = \sum_{i} \frac{1}{2}m \mathbf{v}_{i}^{2} + \sum_{i < j} J(r_{ij}) \hat{\mathbf{v}}_{i} \cdot \hat{\mathbf{v}}_{j},$$

where $r_{ij} = |\mathbf{r}_{i} - \mathbf{r}_{j}|$, $\mathbf{v} =\dot{\mathbf{r}}$, and $\hat{\mathbf{v}} = \mathbf{v} / |\mathbf{v}|$. Models like this come up in studies of collective behavior, like bird flocking.

The canonical momentum is

$$\mathbf{p}_{i} = m \mathbf{v}_{i} + \dfrac{1}{v_{i}} \sum_{j \neq i} J(r_{ij}) \left( \hat{\mathbf{v}}_{j} - (\hat{\mathbf{v}}_{j} \cdot \hat{\mathbf{v}}_{i}) \hat{\mathbf{v}}_{i} \right).$$

It may be helpful to define the "averaged velocity" $\mathbf{d}_{i} \equiv \sum_{j \neq i} J(r_{ij}) \hat{\mathbf{v}}_{j}$, in which case we can rewrite the canonical momentum as

$$\mathbf{p}_{i} = m \mathbf{v}_{i} + \dfrac{1}{v_{i}} \left( \mathbf{d}_{i} - (\mathbf{d}_{i} \cdot \hat{\mathbf{v}}_{i}) \hat{\mathbf{v}}_{i} \right).$$

Noticing that the non-standard term in the momentum is orthogonal to the velocity $\mathbf{v}_{i}$, we can easily write the corresponding Hamiltonian in terms of the velocities as

$$\mathcal{H} = \sum_{i} \frac{1}{2}m \mathbf{v}_{i}^{2} - \sum_{i < j} J(r_{ij}) \hat{\mathbf{v}}_{i} \cdot \hat{\mathbf{v}}_{j}.$$

Question

Is it possible to explicitly write the Hamiltonian $\mathcal{H}$ solely in terms of the canonical positions $\mathbf{r}_{i}$ and momenta $\mathbf{p}_{i}$?

Through calculating dot products of $\mathbf{p}_{i}$ with $\mathbf{v}_{i}$, $\mathbf{d}_{i}$ and $\mathbf{p}_{i}$, I have managed to get to the expression

$$\mathcal{H} = \sum_{i} \dfrac{\mathbf{p}_{i}^{2}}{2m} - \sum_{i} \dfrac{1}{2m v_{i}} \mathbf{p}_{i} \cdot \mathbf{d}_{i},$$

but so far I haven't managed to completely eliminate the velocity dependence.

anon1802
  • 1,350

0 Answers0