I've been trying to use Jordan-Wigner Transformations on a given fermionic Hamiltonian. The given Hamiltonian is: $$ \hat{H}= -\sum_{m=1}^{N}(J_z \hat{S}_{m}^{z} \hat{S}_{m+1}^{z} + \frac{J_{\perp}}{2}(\hat{S}_{m}^{+}\hat{S}_{m+1}^{-}+\hat{S}_{m}^{-}\hat{S}_{m+1}^{+}))$$
and the form of the Jordan-Wigner Transformations given are: $$\hat{S}_{m}^{+}=\hat{c}_{m}^{\dagger} e^{i \pi \sum_{j<m}\hat{n}_{j}} $$
$$\hat{S}_{m}^{-}= e^{-i \pi \sum_{j<m}\hat{n}_{j}} \hat{c}_{m}$$
$$\hat{S}_{m}^{z}=\hat{c}_{m}^{\dagger}\hat{c}_{m} - \frac{1}{2}$$
The answer that I manage to get/how far I get in my calculation is:
$$\hat{H}= -\sum_{m=1}^{N}(J_z (\frac{1}{4} - \frac{1}{2}\hat{c}_{m}^{\dagger}\hat{c}_{m} - \frac{1}{2}\hat{c}_{m+1}^{\dagger}\hat{c}_{m+1} +\hat{c}_{m}^{\dagger}\hat{c}_{m}\hat{c}_{m+1}^{\dagger}\hat{c}_{m+1}) + \frac{J_{\perp}}{2}(\hat{c}_{m}^{\dagger}\hat{c}_{m+1} + \hat{c}_{m}\hat{c}_{m+1}^{\dagger})).$$
However, the answer given in the textbook is:
$$\hat{H}= -\sum_{m=1}^{N}(J_z (\frac{1}{4} - \hat{c}_{m}^{\dagger}\hat{c}_{m} +\hat{c}_{m}^{\dagger}\hat{c}_{m}\hat{c}_{m+1}^{\dagger}\hat{c}_{m+1}) + \frac{J_{\perp}}{2}(\hat{c}_{m}^{\dagger}\hat{c}_{m+1} + \hat{c}_{m+1}^{\dagger}\hat{c}_{m})).$$
Is anyone able to help me make the last step from my answer to the given answer?