Let $\varphi$ be a scalar field and consider the metric $g_{\mu \nu}=\eta_{\mu \nu} + h_{\mu \nu}$. I want to compute $\nabla_\mu \varphi \nabla^\mu \varphi$ to first order.
$$\nabla_\mu \varphi \nabla^\mu \varphi = g^{\mu \nu} \partial_\mu \varphi \partial_\nu \varphi\approx (\eta^{\mu \nu} - h_{\alpha \beta} \eta^{\alpha \mu} \eta^{\beta \nu}) \partial_\mu \varphi \partial_\nu \varphi. \tag{1}$$
Or via:
$$\nabla_\mu \varphi \nabla^\mu \varphi=g_{\mu \nu} \nabla^\mu \varphi \nabla^\nu \varphi \approx (\eta^{\mu \nu} + h_{\alpha \beta} \eta^{\alpha \mu} \eta^{\beta \nu}) \partial_\mu \varphi \partial_\nu \varphi.\tag{2}$$
My question is why do these methods not coincide? Which one is correct?