Eq. (1.14) and (1.15) of David Tong's lectures (p.g. 12) writes:
Consider a galaxy which, in co-moving coordinates, traces a trajectory $\vec{x}(t)$. Then, in physical coordinates, the position is $$\overrightarrow{x}_{\small{\text{phys}}}(t)=a(t)\overrightarrow{x}(t)\tag{1.14}$$ The physical velocity is then $$\overrightarrow{v}_{\small{\text{phys}}}(t)=\frac{d\overrightarrow{x}_{\small{\text{phys}}}}{dt}=H\overrightarrow{x}_{\small{\text{phys}}}+\overrightarrow{v}_{\small{\text{pec}}}\tag{1.15}$$ where $a(t)$ is the scale factor and $H=\dot{a}/a$.
My question is this:
Assuming that $\overrightarrow{v}_{\small{\text{pec}}}$ is constant, can I write $$\overrightarrow{x}_{\small{\text{phys}}}(t)=a(t)(\overrightarrow{v}_{\small{\text{pec}}}t+C)$$ where $C$ is a fixed distance. If so, would that make $C$ the co-moving distance? Thus, $$\overrightarrow{x}_{\small{\text{phys}}}(t)=a(t)\overrightarrow{v}_{\small{\text{pec}}}t+\overrightarrow{x}_{\small{P}}(t),$$ where $\overrightarrow{x}_{\small{P}}(t)=a(t)C$ is the proper distance?