There's two ways to look at it. The first one is as you said: we take the real part of the general solution. We can verify that if $\alpha^2$ is real, the real and imaginary parts of the general solution also happen to solve the differential equation on their own. So the real part is a solution to the differential equation.
Personally, I dislike this way of looking at it. It feels unmotivated, and it leaves open the question of wether we actually found the most general real solution. That's why I like to look at it a different way: Instead of taking the real part of the general complex solution, we take all the real solutions among the general complex solution. Since every real solution is also a complex solution, this guarantees that we actually get the general real solution. This leads us to the question:
For which $C_1, C_2$ is $y(t)=C_1\mathrm e^{\mathrm i\alpha t}+C_2\mathrm e^{-\mathrm i\alpha t}$ real?
To answer the question, we first write our coefficients in polar coordinates to get $C_1=R_1\mathrm e^{\mathrm i\varphi_1}$ and $C_2=R_2\mathrm e^{\mathrm i\varphi_2}$. This gives us
$$\begin{align}y(t)&=R_1\mathrm e^{\mathrm i(\alpha t+\varphi_1)}+R_2\mathrm e^{\mathrm i(\alpha t+\varphi_2)}\\
&=R_1[\cos(\alpha t+\varphi_1)+\mathrm i\sin(\alpha t+\varphi_1)]+R_2[\cos(\alpha t+\varphi_2)+\mathrm i\sin(\alpha t+\varphi_2)]\\
&=R_1\cos(\alpha t+\varphi_1)+R_2\cos(\alpha t+\varphi_2)~ +~ \mathrm i[R_1\sin(\alpha t+\varphi_1)+R_2\sin(\alpha t+\varphi_2)].
\end{align}$$
This is real if and only if
$$R_1\sin(\alpha t+\varphi_1)+R_2\sin(\alpha t+\varphi_2)=0,$$
which is the case if and only if $\varphi_2=-\varphi_1$ and $R_1=R_2$. In other words, $C_2=\overline C_1$. But then we have
$$\begin{align}y(t)&=C_1\mathrm e^{\mathrm i\alpha t}+C_2\mathrm e^{-\mathrm i\alpha t}\\
&=\frac{1}{2}\left(C_1\mathrm e^{\mathrm i\alpha t}+C_2\mathrm e^{-\mathrm i\alpha t}\right)~+~\frac{1}{2}\left(C_1\mathrm e^{\mathrm i\alpha t}+C_2\mathrm e^{-\mathrm i\alpha t}\right)\\
&=\frac{1}{2}\left(C_1\mathrm e^{\mathrm i\alpha t}+\overline C_1\mathrm e^{-\mathrm i\alpha t}\right)~+~\frac{1}{2}\left(\overline C_2\mathrm e^{\mathrm i\alpha t}+C_2\mathrm e^{-\mathrm i\alpha t}\right)\\
&=\frac{1}{2}\left(C_1\mathrm e^{\mathrm i\alpha t}+\overline{C_1\mathrm e^{\mathrm i\alpha t}}\right)~+~\frac{1}{2}\left(\overline{C_2\mathrm e^{-\mathrm i\alpha t}}+C_2\mathrm e^{-\mathrm i\alpha t}\right)\\
&=\frac{1}{2}\cdot 2\operatorname{Re}(C_1\mathrm e^{\mathrm i\alpha t})~+~\frac{1}{2}\cdot 2\operatorname{Re}(C_2\mathrm e^{-\mathrm i\alpha t})\\
&=\operatorname{Re}(C_1\mathrm e^{\mathrm i\alpha t})+\operatorname{Re}(C_2\mathrm e^{-\mathrm i\alpha t})\\
&=\operatorname{Re}(C_1\mathrm e^{\mathrm i\alpha t}+C_2\mathrm e^{-\mathrm i\alpha t})
\end{align}$$
So we can find the general real solution by taking the real part (or twice the real part, but the factor of 2 doesn't matter) of the complex solution.