i have problems applying the fourier transformation. all these integrals confuse me. so here is my calculation:
$$ \Delta\phi(r)=-4\pi\delta(r) $$ $$ \text{Left hand side}:-\frac{1}{(2\pi)^{3/2}}\int_{}^{}e^{ikr}k^2\tilde{\phi}(k) dk $$ $$ \text{Right hand side}: =-\frac{4\pi}{(2\pi)^3}\int_{}^{}e^{ikr} dk=-\frac{1}{(2\pi)^{3/2}}\int_{}^{}e^{ikr}4\pi*(2\pi)^{-3/2} dk $$ $$ \Rightarrow\tilde{\phi}(k)=\frac{4\pi*(2\pi)^{-3/2}}{k^2} $$ $$ \phi(r)=\frac{1}{(2\pi)^{3/2}}\int_{}^{}e^{ikr}\tilde{\phi}(r) dk=\frac{4\pi}{(2\pi)^{3}}\int_{}^{}e^{ikr}\frac{1}{k^2} dk $$ and if i calculate this integral i dont get the expected result ($\phi(r)\sim\frac{1}{r}$)