-1

This $\odot$ notation is e.g. used in this Phys.SE posts:

Qmechanic
  • 220,844
Kurt Hikes
  • 4,767
  • 3
  • 19
  • 41

1 Answers1

4
  1. The notation $V\odot V$ means the symmetric tensor product$^1$ similar to that $V\wedge V$ means the antisymmetric tensor product.

  2. This can be generalized to higher tensor powers. e.g. ${\rm Sym}^3V~\equiv~ V\odot V\odot V~\equiv~V^{\odot 3},$ and $ \bigwedge{}^3V~\equiv~ V\wedge V\wedge V,$ and so forth.

--

$^1$ The tensor product $V\otimes V$ is neither symmetric nor antisymmetric.

Qmechanic
  • 220,844