Starting with Einstein“s equation:
$$ R_{\mu\nu}- \frac{1}{2}g_{\mu\nu}R=8 \pi G T_{\mu\nu}$$
The trace inverted version of Einsteins equation makes it easier here so, first multiplying by $g^{\mu\nu}$:
$$ R_{\mu\nu}g^{\mu\nu}- \frac{1}{2}g_{\mu\nu}g^{\mu\nu}R=8 \pi G T_{\mu\nu}g^{\mu\nu}$$
$$ R- \frac{1}{2}4R=8 \pi G T$$
$$ -R=8 \pi G T$$
Multiplying everything by $ -\frac{1}{2}g_{\mu\nu}$ we obtain:
$$ \frac{1}{2}g_{\mu\nu}R=-4 \pi G T g_{\mu\nu} $$
$$ - \frac{1}{2}g_{\mu\nu}R=4 \pi G T g_{\mu\nu} $$
Subtracting Einsteins equation to this one we get:
$$ - \frac{1}{2}g_{\mu\nu}R - \left( R_{\mu\nu}- \frac{1}{2}g_{\mu\nu}R \right) = 4 \pi G T g_{\mu\nu} - \left( 8 \pi G T_{\mu\nu} \right)$$
$$ -R_{\mu\nu}= -8 \pi G \left( -\frac{T}{2} g_{\mu\nu}+ T_{\mu\nu}\right)$$
$$ R_{\mu\nu}=8 \pi G \left(T_{\mu\nu}- \frac{1}{2} g_{\mu\nu}T \right)$$
Now, considering the Maxwell energy momentum tensor, that you can obtain from varying the action w.r.t. the metric we find:
$$ S=\int d^4x \sqrt-g \left( - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} \right)$$
$$ \delta S=\int d^4x \delta \left[ \sqrt-g \left( - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} \right ) \right]$$
$$ \delta S=\int d^4x \sqrt-g \left(-\frac{1}{2}\right) \left( - \frac{1}{4}F_{\alpha\beta}F^{\alpha\beta}g_{\mu\nu} +F_{\mu\beta}F^{\beta}_{\nu}\right ) \delta g^{\mu\nu}$$
The energy-momentum tensor is then:
$$ T_{\mu\nu}= \frac{-2}{\sqrt-g} \frac{\delta S_{matter}}{\delta g^{\mu\nu}}$$
$$ T_{\mu\nu}= \frac{-2}{\sqrt-g} \left( -\frac{1}{2} \sqrt-g \left( - \frac{1}{4}F_{\alpha\beta}F^{\alpha\beta}g_{\mu\nu} +F_{\mu\beta}F^{\beta}_{\nu}\right ) \right)$$
$$ T_{\mu\nu}= - \frac{1}{4}F_{\alpha\beta}F^{\alpha\beta}g_{\mu\nu} +F_{\mu\beta}F^{\beta}_{\nu}$$
From here notice the 4D trace of the energy momentum tensor:
$$ T =T_{\mu\nu} g^{\mu\nu}= - \frac{1}{4}F_{\alpha\beta}F^{\alpha\beta}g_{\mu\nu} g^{\mu\nu} +F_{\mu\beta}F^{\beta}_{\nu}g^{\mu\nu}$$
$$ T = - \frac{1}{4}F_{\alpha\beta}F^{\alpha\beta}4 +F_{\mu\beta}F^{\mu\beta}=0$$
Therefore, substituting back in Einsteins equation:
$$ R_{\mu\nu}=8 \pi G T_{\mu\nu} $$
Multiplying by the inverse metric tensor once more:
$$ R_{\mu\nu}g^{\mu\nu}=8 \pi G T_{\mu\nu}g^{\mu\nu}$$
$$ R=8 \pi G T$$
$$ R=0$$