In the first part of Section 4, the author gives \begin{equation} S = \frac1{16\pi G^N_{(5)}}\int(-G_{(5)})^{1/2}R^{(5)}d^5x = \frac1{16\pi G^N_{(4)}}\int(-G_{(4)})^{1/2}\Big(R^{(4)} - \frac32\partial_\mu\phi\partial^\mu\phi - \frac14e^{3\phi}F_{\mu\nu}F^{\mu\nu}\Big)d^4x. \end{equation} How is this reduction obtained?
I show the calculation I did below but it does not match: \begin{align} S &= \frac1{16\pi G^N_{(5)}}\int(-G_{(5)})^{1/2}R^{(5)}d^5x = \frac1{16\pi G^N_{(5)}}\int(-G_{(5)})^{1/2} \Big(R^{(4)} - 2e^{-\phi}\nabla^2e^\phi - \frac14e^{2\phi}F_{\mu\nu}F^{\mu\nu}\Big)d^5x \end{align} The five dimensional metric is decomposed as \begin{equation} G_{(5)} = \det\begin{bmatrix} G^{(4)}_{\mu\nu} + G_{44}A_\mu A_\nu& G_{44}A_\mu\\ G_{44}A_\nu& G_{44} \end{bmatrix} = \det\begin{bmatrix} G^{(4)}_{\mu\nu}& 0\\ G_{44}A_\nu& G_{44} \end{bmatrix} = G_{44}\det(G^{(4)}_{\mu\nu}) =: G_{44}G_{(4)},\;\; G_{44} = e^{2\phi}. \end{equation}
$\nabla^2f = g^{\mu\nu}\nabla_\mu\partial_\nu f = g^{\mu\nu}\partial_\mu\partial_\nu f - g^{\mu\nu}\Gamma^\rho_{\mu\nu}\partial_\rho f$, where the connection is changed as \begin{equation} \tilde\Gamma^\rho_{\mu\nu} = \frac12e^{-2\Omega}g^{\rho\lambda} (\partial_\mu(e^{2\Omega}g_{\lambda\nu}) + \partial_\nu(e^{2\Omega}g_{\lambda\mu}) - \partial_\lambda(e^{2\Omega}g_{\mu\nu})) = \Gamma^\rho_{\mu\nu} + 2\delta^\rho_{(\nu}\partial_{\mu)}\Omega - g_{\mu\nu}\partial^\rho\Omega \end{equation} Then the Laplacian changes as \begin{equation} \tilde\nabla^2f = e^{-2\Omega}(g^{\mu\nu}\nabla_\mu\partial_\nu f + (2-4)\partial^\rho\Omega\partial_\rho f) = e^{-2\Omega}(\nabla^2f - 2\partial^\rho\Omega\partial_\rho f) \end{equation}
\begin{align} S &= \frac1{16\pi G^N_{(5)}}\int(-G_{(5)})^{1/2}R^{(5)}d^5x = \frac1{16\pi G^N_{(5)}}\int(-G_{(5)})^{1/2} \Big(R^{(4)} - 2e^{-\phi}\nabla^2e^\phi - \frac14e^{2\phi}F_{\mu\nu}F^{\mu\nu}\Big)d^5x \end{align} The five dimensional metric is decomposed as \begin{equation} G_{(5)} = \det\begin{bmatrix} G^{(4)}_{\mu\nu} + G_{44}A_\mu A_\nu& G_{44}A_\mu\\ G_{44}A_\nu& G_{44} \end{bmatrix} = \det\begin{bmatrix} G^{(4)}_{\mu\nu}& 0\\ G_{44}A_\nu& G_{44} \end{bmatrix} = G_{44}\det(G^{(4)}_{\mu\nu}) =: G_{44}G_{(4)},\;\; G_{44} = e^{2\phi}. \end{equation}
The transformation of the curvature under the conformal transformation is for $\tilde g_{\mu\nu} = e^{2\Omega}g_{\mu\nu}$, $\tilde R = e^{-2\Omega}[R - 2(D-1)\nabla^2\Omega - (D-2)(D-1)\partial_\mu\Omega\partial^\mu\Omega]$. Now applying it for $g_{\mu\nu} = G^{(4)}_{\mu\nu}$ and $D=4$ gives \begin{equation} R^{(4)} = e^{2\Omega}(\tilde R^{(4)} + 6\nabla^2\Omega - 6\partial_\mu\Omega\partial^\mu\Omega). \end{equation} and the determinant factor changes as $(-G_{44}G_{(4)})^{1/2} = (-e^{2\phi}e^{-8\Omega}\tilde G_{(4)})^{1/2}$.
\begin{align} S &= \frac{2\pi R}{16\pi G^N_{(5)}}\int(-G_{(4)})^{1/2}e^{\phi-4\Omega} \Big(e^{2\Omega}\tilde R^{(4)} + 6e^{2\Omega}\nabla^2\Omega - 6e^{2\Omega}\partial_\mu\Omega\partial^\mu\Omega\nonumber\\ &\hspace{5cm} - 2e^{-\phi}e^{2\Omega}(\nabla^2e^\phi + 2\partial^\rho\Omega\partial_\rho e^\phi) - \frac14e^{2\phi+4\Omega}F_{\mu\nu}F^{\mu\nu}\Big)d^4x. \end{align} By setting $\Omega = \phi/2$, the terms including $\Omega$ and $\phi$ are \begin{equation} 3\nabla^2\phi - \frac32\partial_\mu\phi\partial_\mu\phi - 2e^{-\phi}(\nabla^2e^\phi + \partial^\mu\phi\partial_\mu e^\phi) \rightarrow - \frac72\partial_\mu\phi\partial_\mu\phi, \end{equation} where we removed the total derivative terms.