1

Under special relativity we have the Lorentz factor: $$ \gamma = \sqrt{\frac{1}{1-\frac{v^2}{c^2}}} $$ Which essentially mathematically describes how the relative speeds between objects can never surpass the speed of light, but only tend towards it, even for two photons travelling in opposite directions away from each other.

Applying this to the accelerating expansion of the universe, this must mean that although distant galaxies are (in our galaxy's frame of reference) moving away from the Milky Way at accelerating velocities, their accelerations must eventually decrease as they tend towards the speed of light.

Is this a valid interpretation of the physics? What (if any) implications does this have for the rate of creation of new space and the evolution of the universe?

0 Answers0