3

I have two questions about Vacuum to vacuum transition amplitude.

  1. Can any particle stay in $|0\rangle$?
  2. I was studying this topic from Srednicki's QFT book. He writes in eq.$(6.22)$ $$\langle0|0 \rangle_{f,h} = \int \mathcal{D}p \mathcal{D}q \, \exp \Big[i\int_{-\infty}^\infty dt (p \dot{q} - H_0(p,q) - H_1(p,q) + fq + hp \Big]$$ $$ =\exp \Big[-i \int_{-\infty}^\infty dt H_1 \Big(\frac{1}{i} \frac{\delta}{\delta h(t)}, \frac{1}{i} \frac{\delta}{\delta f(t)} \Big) \Big] $$ $$ \times \int \mathcal{D}p \mathcal{D}q \,\exp \Big[i\int_{-\infty}^\infty dt (p \dot{q} - H_0(p,q) + fq + hp \Big] \tag{6.22} $$

Here in the second line the arguments of $H_1$ suddenly changes from $p$,$q$ to $\frac{1}{i} \frac{\delta}{\delta h(t)}, \frac{1}{i} \frac{\delta}{\delta f(t)}$. How can I derive this line from the first line?

Qmechanic
  • 220,844
rainman
  • 3,083
  • 4
  • 37
  • 58

0 Answers0