Einstein's equation in absense of any source (i.e., $T_{ab}=0$) $$R_{ab}-\frac{1}{2}g_{ab}R=0$$ has the solution $$R_{ab}=0.$$
But I think $R_{ab}=0$ does not imply that all components of the Riemann-Christoffel curvature tensor $R^c_{dab}$ be zero (or does it?). From this can I conclude that spacetime can be curved even in absence of any source?