I am starting from the assumption that the gravitational warping of spacetime increases its volume, so a spherical region of space with a fixed surface area would be able to fit a larger number of telephone booths inside it if it contained a large mass than it would without the mass. John Rennie's answer to this question: When a massive object warps the space around it, does the amount of space expand? and some of the answers to this question: Does curved spacetime change the volume of the space? give me the impression that gravitational warping does increase volume, but some of the other answers I have seen suggest otherwise.
A second assumption I am using is that energy exerts a gravitational pull and empty space has some intrinsic energy embedded within it. I am basing this on what I have read about kugelblitz backholes, and the vacuum energy of space.
So, when we examine a region of space defined by a surface area around a large mass, does that region have more gravity than what would be attributed to the mass alone due to the relatively larger volume of space inside the region created by the mass's warping of spacetime?