7

If I have the following metric:

$$ds^2=(1-2\phi)\,c^2 dt^2 - (1-2\phi)(dx^2+dy^2+dz^2)$$

$\phi$ being the gravitational potential with $|\phi| \ll 1$ everywhere.

How do I find a coordinate transformation to a locally inertial coordinate system to first order in $\phi$?

One method that I know of is writing $\phi$ as an equivalent acceleration $g\,\sqrt{x^2+y^2+z^2}$, and then make a coordinate transformation such that the particle is accelerating with this acceleration in the new frame. Is this correct?

But, more importantly, I am looking for an alternative method. E.g. Is it possible to make a coordinate transformation such that the Christoffel symbols are zero?

How can I write any general metric in a locally inertial frame?

Note: I am actually studying this in an SR course which introduces GR very very briefly. But, I know the basic definitions of manifolds, such as differential forms, and tangent spaces. So, I won't mind a technical answer, but it would be great if you could talk about any terms that I am not likely to know in a couple of lines. (or I can find it out for myself, if it is too much hardwork for you). I have studied GR uptil the geodesic equation.

Elio Fabri
  • 5,968
  • 1
  • 11
  • 18

3 Answers3

5

I'll be substantially lazy and drop all quadratic terms. Keep in mind that I'm doing everything to linear order. Also, I'll suppose we are finding normal coordinates around the point $x^\mu = 0$. It's trivial to modify the technique for use anywhere else. I'll follow your mostly minus metric convention but use $c=1$. We have the metric

$$\mathrm{d}\tau^{2}=g_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu},\tag1$$

and we want coordinates $\tilde{x}^\mu (x)$ such that

$$ \mathrm{d}\tau^{2}=\eta_{\mu\nu} \mathrm{d}\tilde{x}^{\mu}\mathrm{d}\tilde{x}^{\nu},\tag2$$

(to linear order) in a neighbourhood of zero. We write the coordinate transformation as

$$ \tilde{x}^{\mu}=ax^{\mu}+\frac{1}{2}b_{\nu\rho}^{\mu}x^{\nu}x^{\rho}+\cdots,\tag3$$

where $a$ and $b^\mu_{\nu\rho}$ are constants to be determined. The higher order terms don't influence the construction. Without loss of generality we take $b^\mu_{\nu\rho}=b^\mu_{\rho\nu}$. Subbing (3) in (2) I get (exercise)

$$ \mathrm{d}\tau^{2} = \left[ a^{2}\eta_{\rho\sigma}+a\left(b_{\sigma\lambda\rho}+b_{\rho\lambda\sigma}\right)x^{\lambda}+\cdots \right] \mathrm{d}x^{\rho}\mathrm{d}x^{\sigma}. $$

Matching this onto (1) order by order gives the conditions (exercise)

$$\begin{array}{rcl} a^{2}\eta_{\rho\sigma}&=&g_{\rho\sigma}(x=0),\\ a\left(b_{\sigma\lambda\rho}+b_{\rho\lambda\sigma}\right)&=&g_{\rho\sigma,\lambda}(x=0). \end{array}$$

In your case this gives the conditions (exercise)

$$\begin{array}{rcl} a^{2}&=&1-2\phi^{0},\\ ab_{t\lambda t}&=&-\phi_{,\lambda}^{0},\\ ab_{i\lambda i}&=&\phi_{,\lambda}^{0},\ \text{all the other}\ b^\mu_{\nu\rho}\ \text{vanish}, \end{array}$$

(where for shorthand $\phi^0 \equiv \phi(x=0)$ and $i=x,y,z$) which I'm sure you can solve. :) I get

$$\tilde{x}^{\mu}=\sqrt{1-2\phi^{0}}x^{\mu}-\frac{\phi_{,\lambda}^{0}\,x^{\lambda}}{2\sqrt{1-2\phi^{0}}}x^{\mu}+\cdots,$$

though you should check this yourself (cause I don't feel like it) in case I made any index/sign mistakes. :)

Elio Fabri
  • 5,968
  • 1
  • 11
  • 18
Michael
  • 16,830
1

I have looked at the three-dimensional analogue of the problem Michael treats. Their are 27 equations involved, of the form

\begin{equation*} g_{ \rho\sigma,\lambda }=a~(b_{\sigma\lambda\rho}+b_{\rho\lambda\sigma}) \end{equation*}

The equations split into groups of size (9, 12, 6 ). The group of six is the most difficult group to solve for. These six equations involve those $b_{ \alpha \beta \gamma}$ with $\alpha ,~\beta ,~\gamma~$ all taking on different values. It can be shown that these $b_{ \alpha \beta \gamma}$ must all equal zero.

The nine equations involving just the \begin{equation*} b_{i \gamma i}~~~~;i=1,2,3~~;\gamma = 1,2,3 \end{equation*} give a value, for a ‘b’ , most straightforwardly.

To obtain a ‘b’ value from an equation in the group of twelve, use is made of the symmetry \begin{equation*} b_{ \alpha \beta \gamma}=b_{ \alpha \gamma \beta } \end{equation*}

It looks as if the 27 equations may also be solved, in the case of a more general ( not diagonal ) metric.


I have looked at the full four-dimensional problem that Michael treats. There are 64 equations involved, of the form

\begin{equation*} g_{ \rho\sigma,\lambda }=a~(b_{\sigma\lambda\rho}+b_{\rho\lambda\sigma}) \end{equation*}

The equations split into groups of size (16, 24, 24 ). I think the group of twenty four equations involving those $b_{ \alpha \beta \gamma}$ with $\alpha ,~\beta ,~\gamma~$ all taking on different values will be the most difficult to solve. I guess it can be shown that these $b_{ \alpha \beta \gamma}$ must all equal zero ( not yet done).

The sixteen equations involving the \begin{equation*} b_{i \gamma i}~~~~;i=1,2,3,4~~;\gamma = 1,2,3,4 \end{equation*} will give values of a ‘b’ most straightforwardly.

To obtain a ‘b’ value from an equation in the second group of twenty four , use can be made of the symmetry \begin{equation*} b_{ \alpha \beta \gamma}=b_{ \alpha \gamma \beta } \end{equation*}

So, it looks as if Michael’s answer is incorrect ( Dated 01 May 2022 ), as regards the number of non-zero coefficients

Please let me know if you spot any errors in the above.

0

I thought I would add some support to/extend Michael’s answer by giving details of how to derive

\begin{equation*} \mathrm{d}\tau^{2} = \left[ a^{2}\eta_{\rho\sigma}+a\left(b_{\sigma\lambda\rho}+b_{\rho\lambda\sigma}\right)x^{\lambda}+\cdots \right] \mathrm{d}x^{\rho}\mathrm{d}x^{\sigma}. \end{equation*}

by using (3) in (2), see his answer.

Detailed Working.

I rewrote (2) and (3) as below

\begin{equation*} \mathrm{d}\tau^{2}=\eta_{pq} \mathrm{d}\tilde{x}^{p}\mathrm{d}\tilde{x}^{q},\ (2^{\prime}) \end{equation*}

\begin{equation*} \tilde{x}^{i}=ax^{i}+\frac{1}{2} b_{mn}^{i}x^{m}x^{n}+\cdots,\ (3^{\prime}) \end{equation*}

To use ($3^{\prime}$) in ($2^{\prime}$) we need an expression for $\mathrm{d}\tilde{x}^{i}$

\begin{equation*} \mathrm{d}\tilde{x}^{i}=\frac{ \partial \tilde{ x }^i }{ \partial x^1 } \mathrm{d}x^{1} +\frac{ \partial \tilde{ x }^i }{ \partial x^2 } \mathrm{d}x^{2} +\frac{ \partial \tilde{ x }^i }{ \partial x^3 } \mathrm{d}x^{3} +\frac{ \partial \tilde{ x }^i }{ \partial x^4 } \mathrm{d}x^{4} \end{equation*}

Now, using ($3^{\prime}$) , but not the Einstein summation convention

\begin{align*} \frac{ \partial \tilde{ x }^i }{ \partial x^1 } &= \frac{ \partial }{ \partial x^1 } \left( ax^{i}+\frac{1}{2} \displaystyle \sum_{m,n=1}^4 b_{mn}^{i}x^{m}x^{n} \right) \\ &=a \delta_{i,1}+ \frac{ \partial }{ \partial x^1 } \frac{ 1}{ 2 } \left( b_{11}^{i}x^1 x^1+ b_{12}^{i}x^1 x^2+ b_{13}^{i}x^1 x^3+ b_{14}^{i}x^1 x^4+ b_{21}^{i}x^2 x^1+ b_{31}^{i}x^3 x^1+ b_{41}^{i}x^4 x^1 \right) \\ &=a \delta_{i,1}+\frac{ 1}{ 2 } \left( 2 b_{11}^{i}x^1 + 2 b_{12}^{i} x^2+ 2 b_{13}^{i}x^3+ 2 b_{14}^{i}x^4 \right ) \end{align*} Where I dropped terms that would give zero when differentiated and then used the assumed symmetry of the $b's$.

I rewrite the above as

\begin{equation*} \frac{ \partial \tilde{ x }^i }{ \partial x^1 } =a \delta_{i,1}+\displaystyle \sum_{j=1}^4 b_{1j}^{i}x^{j} \end{equation*}

Similarly

\begin{equation*} \frac{ \partial \tilde{ x }^i }{ \partial x^2 } =a \delta_{i,2}+\displaystyle \sum_{j=1}^4 b_{2j}^{i}x^{j} \end{equation*}

\begin{equation*} \frac{ \partial \tilde{ x }^i }{ \partial x^3 } =a \delta_{i,3}+\displaystyle \sum_{j=1}^4 b_{3j}^{i}x^{j} \end{equation*}

\begin{equation*} \frac{ \partial \tilde{ x }^i }{ \partial x^4 } =a \delta_{i,4}+\displaystyle \sum_{j=1}^4 b_{4j}^{i}x^{j} \end{equation*}

\begin{equation*} \mathrm{d}\tilde{x}^{i}=\frac{ \partial \tilde{ x }^i }{ \partial x^1 } \mathrm{d}x^{1} +\frac{ \partial \tilde{ x }^i }{ \partial x^2 } \mathrm{d}x^{2} +\frac{ \partial \tilde{ x }^i }{ \partial x^3 } \mathrm{d}x^{3} +\frac{ \partial \tilde{ x }^i }{ \partial x^4 } \mathrm{d}x^{4} \\ \end{equation*}

\begin{align*} \mathrm{d}\tilde{x}^{i}=&+a(\delta_{i,1} \mathrm{d}x^{1} + \delta_{i,2} \mathrm{d}x^{2}+\delta_{i,3} \mathrm{d}x^{3} + \delta_{i,4} \mathrm{d}x^{4}) \\ &+ \displaystyle \sum_{j=1}^4 b_{1j}^{i}x^{j} \mathrm{d}x^{1} +\displaystyle \sum_{j=1}^4 b_{2j}^{i}x^{j} \mathrm{d}x^{2} +\displaystyle \sum_{j=1}^4 b_{3j}^{i}x^{j} \mathrm{d}x^{3} +\displaystyle \sum_{j=1}^4 b_{4j}^{i}x^{j} \mathrm{d}x^{4} \\ =&+a\mathrm{d}x^{i} \\ &+\displaystyle \sum_{j=1}^4 ( b_{1j}^{i}x^{j} \mathrm{d}x^{1}+ b_{2j}^{i}x^{j} \mathrm{d}x^{2} + b_{3j}^{i}x^{j} \mathrm{d}x^{3}+ b_{4j}^{i}x^{j} \mathrm{d}x^{4} ) x^j \\ \end{align*}

\begin{equation*} \mathrm{d}\tilde{x}^{i}=a\mathrm{d}x^{i} + \displaystyle \sum_{k,j=1}^4 b_{kj}^{i}x^{j} \mathrm{d}x^{k} \end{equation*}

So using this, in

\begin{equation*} \mathrm{d}\tau^{2}=\eta_{pq} \mathrm{d}\tilde{x}^{p}\mathrm{d}\tilde{x}^{q},\ (2^{\prime}) \end{equation*}

\begin{align*} \mathrm{d}\tau^{2}= \displaystyle \sum_{p,q=1}^4 \eta_{pq}(a \mathrm{d}x^{p}&+ \displaystyle \sum_{k,j=1}^4 b_{kj}^{p}x^{j} \mathrm{d}x^{k}) \\ ( a\mathrm{d}x^{q}&+ \displaystyle \sum_{r,s=1}^4 b_{rs}^{q}x^{s} \mathrm{d}x^{r} ) \end{align*}

We have four terms, as the $x^j$ are small one is dropped, the first term appears in Michaels result and is given by

\begin{equation*} \displaystyle \sum_{p,q=1}^4 a^2 \eta_{pq} \mathrm{d}x^{p} \mathrm{d}x^{q} \end{equation*} or, using his notation and the Einstein summation convention

\begin{equation*} a^2 \eta_{\rho \sigma} \mathrm{d}x^{\rho} \mathrm{d}x^{\sigma} \end{equation*} Let \begin{equation*} \mathrm{d}\tau^{2} = T_1+T_2+T_3 \end{equation*} Where \begin{align*} T_1 &= \displaystyle \sum_{p,q=1}^4 \eta_{pq} a^2 \mathrm{d}x^{p} \mathrm{d}x^{q}= a^2 \eta_{\rho \sigma} \mathrm{d}x^{\rho} \mathrm{d}x^{\sigma}\\ T_2 &= \displaystyle \sum_{p,q=1}^4 \eta_{pq}~ a~ \mathrm{d}x^{p} \displaystyle \sum_{r,s=1}^4 b_{rs}^{q}~x^s\mathrm{d}x^{r} \\ T_3 &= \displaystyle \sum_{p,q=1}^4 \eta_{pq} \displaystyle \sum_{k,j=1}^4 b_{kj}^{p}~x^j\mathrm{d}x^{k} ~a~ \mathrm{d}x^{q} \end{align*}

Both $T_2 \text{and}~T_3$ may be re-expressed in quite similar ways.

$T_2$ may be re-written in the form \begin{equation*} T_2 = a~\displaystyle \sum_{p,q=1}^4\displaystyle \sum_{r,s=1}^4 \eta_{pq}~ \mathrm{d}x^{p} ~b_{rs}^{q}~x^s\mathrm{d}x^{r} \end{equation*} Or, as \begin{equation*} T_2 = a~\displaystyle \sum_{p=1}^4 \mathrm{d}x^{p} \displaystyle \sum_{s=1}^4 x^s \displaystyle \sum_{r=1}^4 \mathrm{d}x^{r} \displaystyle \sum_{q=1}^4 \eta_{pq}~b_{rs}^{q} \end{equation*}

Define \begin{equation*} b_{\alpha \beta \gamma} =\displaystyle \sum_{t=1}^4 \eta_{\alpha t}~b_{\gamma \beta}^{t} \end{equation*} then \begin{equation*} \displaystyle \sum_{q=1}^4 \eta_{pq}~b_{rs}^{q}=\displaystyle \sum_{t=1}^4 \eta_{pt}~b_{rs}^{t} =b_{psr} \end{equation*}

\begin{equation*} T_2 = a~\displaystyle \sum_{p=1}^4 \mathrm{d}x^{p} \displaystyle \sum_{s=1}^4 x^s \displaystyle \sum_{r=1}^4 \mathrm{d}x^{r} ~b_{psr} \end{equation*} Re-label ‘$r$’ as ‘$q$\begin{equation*} T_2 = a~\displaystyle \sum_{p,q=1}^4 ~\displaystyle \sum_{s=1}^4~b_{psq}~ x^s \mathrm{d}x^{p}~\mathrm{d}x^{q} \end{equation*}

Using Michael’s notation so $p,q,s \to \rho , \sigma , \lambda$ , and the Einstein summation convention

\begin{equation*} T_2 = a~b_{\rho\lambda\sigma}~x^{\lambda}~~\mathrm{d}x^{\rho}\mathrm{d}x^{\sigma} \end{equation*}

$T_3$ may be re-written as \begin{equation*} T_3 = a~\displaystyle \sum_{q=1}^4 \mathrm{d}x^{q} \displaystyle \sum_{j=1}^4 x^j \displaystyle \sum_{k=1}^4 \mathrm{d}x^{k} \displaystyle \sum_{p=1}^4 \eta_{pq}~b_{kj}^{p} \end{equation*} There is a slight wrinkle to handle. Using the symmetry of $\eta_{pq}$, we note that

\begin{equation*} \displaystyle \sum_{p=1}^4 \eta_{pq}~b_{kj}^{p}=\displaystyle \sum_{p=1}^4 \eta_{qp}~b_{kj}^{p} \end{equation*}

Then using the definition of $b_{\alpha \beta \gamma}$

\begin{equation*} \displaystyle \sum_{p=1}^4 \eta_{qp}~b_{kj}^{p}= \displaystyle \sum_{t=1}^4 \eta_{qt}~b_{kj}^{t}=b_{qjk} \end{equation*} So,

\begin{equation*} T_3 = a~\displaystyle \sum_{q=1}^4 \mathrm{d}x^{q} \displaystyle \sum_{j=1}^4 x^j \displaystyle \sum_{k=1}^4 \mathrm{d}x^{k}~b_{qjk} \end{equation*} Re-label ‘$k$’ as ‘$p$

\begin{equation*} T_3 = a~\displaystyle \sum_{p,q=1}^4 \displaystyle \sum_{j=1}^4 ~b_{qjp}~x^j \mathrm{d}x^{p}~ \mathrm{d}x^{q} \end{equation*}

Using Michael’s notation so $p,q,j \to \rho , \sigma , \lambda$ , and the Einstein summation convention

\begin{equation*} T_3 = a~b_{\sigma \lambda \rho }~x^{\lambda}~~\mathrm{d}x^{\rho}\mathrm{d}x^{\sigma} \end{equation*}

Collecting the results for $T_1,~T_2,~T_3$ \begin{equation*} \mathrm{d}\tau^{2} = T_1+T_3+T_2~~~~~~~~~~~~,\text{meant} \end{equation*}

\begin{equation*} \mathrm{d}\tau^{2} = \left[ a^{2}\eta_{\rho\sigma}+a\left(b_{\sigma\lambda\rho}+b_{\rho\lambda\sigma}\right)x^{\lambda} \right] \mathrm{d}x^{\rho}\mathrm{d}x^{\sigma} \end{equation*}

Which confirms one of Michael’s stated results.

Pleas note that the $b$'s with three subscripts, are not defined in Michael's answer.