I'm interested in knowing whether sigma models with an $n$-sheeted Riemann surface as the target space have been considered in the literature. To be explicit, these would have the action \begin{align*} S=\frac{1}{2}\int d^2x\, \left(\partial_a R\partial^a R+R^2\partial_a \theta {\partial}^a\theta\right), \end{align*} where $R$ and $\theta$ represent radial and angular coordinates on the target space respectively. Also, $\theta\sim \theta+2\pi n$ for an $n$-sheeted Riemann surface.
Has anyone seen anything like this? One thing that I would be particularly happy to see is a computation of the partition function.