After constructing a physical state and discovering the particle content, how can one find the fermionic and bosonic degrees of freedom?
Eg.
Constructing the physical states of an $\mathcal{N} = 2$ short massive vector multiplet, with $s = \frac{1}{2}$ we get:
$$\left( -1, 2 \times \left(-\frac{1}{2}\right), 2 \times 0 , 2 \times \frac{1}{2} ,1\right)$$
From this I can see the particle content:
$(-1,0,1) \to 1$ massive vector
$\left( 2\times \left( -\frac{1}{2}\right),0,1 \right) \to 1$ massive Dirac Fermion
$(0) \to 1$ massive real scalar
How do I calculate the bosonic and fermionic degrees of freedom based on the helicity content?