1

Say I have a set of combinatorial Dyson-Schwinger equations of the form

$$\begin{align} X_1 &= \mathbb{1} + \alpha B_+^a (f_1(X_1,...X_N)) \\ & ... \tag{1} \\ X_N &= \mathbb{1} + \alpha B_+^n (f_1(X_1,...X_N)) \end{align}$$

that has an unique solution, solved by using the ansatz

$$X_j = \mathbb{1} + \sum_k^\infty c_{j,k} \alpha^k \tag{2}$$

How can I check if the elements $c_{j,k}$ form a Hopf subalgebra, by use of the coproduct? The coproduct is defined by

$$\Delta \circ B^i_+ = B^i_+ \otimes \mathbb{1} + (\text{id} \otimes B^i_+) \Delta \tag{3}$$

Thank you in advance.

Pxx
  • 1,773

0 Answers0