You are quite right, there is no objective reason why we should restrict ourselves to canonical transformations. As a matter of fact, the Hamilton equations can be formulated in a coordinate-independent way (by coordinates I mean the coordinates on phase space, i.e. the configuration variables and conjugate momenta), so that the very need of choosing coordinates does not arise. The coordinate-independent formulation is given by the following equation:
$$
\omega(X,\cdot)=dH
$$
Here $H$ is your Hamiltonian and $dH$ is differential, $X$ is the tangent vector to the dynamical trajectory on phase space and $\omega$ is called a symplectic form. It is a 2-form (i.e. it is an antisymmetric tensor that accepts two vectors as its arguments) which moreover is closed, in the sense that $d\omega=0$, where the (exterior) differential of $\omega$ is defined in arbitrary coordinates $x^{I}$ (both configuration and momentum variables) as
$$
(d\omega)_{IJK}=\frac{\partial \omega_{JK}}{\partial x^{I}}+\frac{\partial \omega_{KI}}{\partial x^{J}}+\frac{\partial \omega_{IJ}}{\partial x^{K}}
$$
The vector $X$ is defined in the same coordinates as
$$
X^{I}=\frac{dx^{I}}{dt}
$$
Now, there is a theorem due to Darboux that says that if the phase space that you are considering admits a symplectic form, then locally one can find (non-unique) coordinates $(q^{i},p_{i})$ (the number of $I$ indices is double the number of $i$ indices) such that
$$
\omega=dq^{i}\wedge d{p}_{i}
$$
where $\wedge$ is the wedge product, i.e. the antisymmetric part of the regular tensor product multiplied by two. Equivalently,
$$
\omega(X,Y)=X^{i}Y_{i}-X_{i}Y^{i}
$$
where $X^{i}$ and $X_{i}$ are the components of the vector $X$ with respect to the given coordinates (the same goes for $Y$). If $X$ is the tangent vector to a curve on phase space, then
$$
X^{i}=\frac{dq^{i}}{dt}\qquad X_{i}=\frac{dp_{i}}{dt}
$$
Canonical transformations are precisely those that keep $\omega$ invariant in the form given above.
There is also a theorem (rather, a definition) that endows the phase spaces that you derive from Lagrangian mechanics with a canonical symplectic form, so that the Darboux theorem always holds in such phase spaces (they are called cotangent bundles on configuration spaces).
Let's now see what the Hamilton equations given in the coordinate-free form translate into with respect to the Darboux coordinates. We have
$$
dH=\frac{\partial H}{\partial q^{i}}\,dq^{i}+\frac{\partial H}{\partial p_{i}}\,dp_{i}
$$
and
$$
\omega(X,\cdot)=dq^{i}(X)dp_{i}-dp_{i}(X)dq^{i}=X^{i}dp_{i}-X_{i}dq^{i}=\frac{dq^{i}}{dt}\,dp_{i}-\frac{dp_{i}}{dt}\,dq^{i}
$$
Hence
$$
\frac{dq^{i}}{dt}\,dp_{i}-\frac{dp_{i}}{dt}\,dq^{i}=\frac{\partial H}{\partial q^{i}}\,dq^{i}+\frac{\partial H}{\partial p_{i}}\,dp_{i}
$$
or
$$
\frac{dq^{i}}{dt}=\frac{\partial H}{\partial p_{i}}\qquad \frac{dp_{i}}{dt}=-\frac{\partial H}{\partial q^{i}}
$$
which are the usual Hamilton equations. However, since $\omega(X,\cdot)=dH$ does not make reference to any specific coordinates, the Darboux coordinates are as good as any other set of coordinates. Alternatively, one may just start from the usual form of the Hamilton equations and define arbitrary changes of coordinates, as you have figured out. So what is the use of coordinate transformations?
There are two answers to this question. The first one is that the Darboux coordinates, which are transformed into one another by canonical transformations, are the ones in which the Hamilton equations take arguably the simplest form. But you may not care about this simplification. Then there is a second, more relevant answer: it can be shown that any transformation on the configuration space (the $q^{i}$'s) which is a symmetry of the Lagrangian action of your system lifts automatically to a canonical transformation on the phase space of the Hamiltonian formulation, meaning that to any symmetry transformation of the configuration space is associated a canonical transformation of the phase space. Therefore, if you focus on symmetries rather than on the Hamilton equations, you find that the canonical transformations on phase space are the ones that realize a symmetry transformation on the system: solutions of the dynamics which are related to one another through a symmetry transformation are also related by a canonical transformation.