I would like to better under the manipulations/formalism applied in order to evaluate the following matrix element from Schwartz "Quantum Field Theory and the Standard Model" (Eq. 4.16)
$$\quad V _ { n i } ^ { ( R ) } = \left\langle \psi _ { e } ^ { 3 } \phi ^ { \gamma } \psi _ { e } ^ { 2 } | V | \psi _ { e } ^ { 1 } \psi _ { e } ^ { 2 } \right\rangle \, . \tag{1}$$
In this problem we are trying to calculate the transition matrix to first non-trivial order:
$$T _ { f i } = V _ { f i } + \sum _ { n } V _ { f n } \frac { 1 } { E _ { i } - E _ { n } } V _ { n i } + \cdots$$
where the interaction is between two scalar electrons defined by the interaction potential
$$ V = \frac{1}{2} e \int d^3 x \psi_e (x) \phi(x) \psi_e (x)$$
with a scalar field operator for any scalar particle being defined by
$$ \phi(\vec x) := \int \frac {d^3 p}{(2 \pi)^3} \frac{1}{\sqrt{2 \omega_p}} \left( a_p e^{i \vec p \vec {x}} + a_p^\dagger e^{- i \vec{p} \vec{x}} \right) \, .$$
There are two possible intermediate states based on the time-ordering of the relevant Feynman diagram (which I do not have a picture of). In (1) we are attempting to calculate the retarded interaction amplitude between the initial state $ | \psi_e^1 \psi_e^2 \rangle $ and the intermediate state $ | \psi_e^3 \phi^{\gamma} \psi_e^2 \rangle $ where electron 1 emits a photon and electron 2 feels the effect of the photon at an earlier time. The following commutation relations are also assumed
$$ \left[ a _ { k } , a _ { p } ^ { \dagger } \right] = ( 2 \pi ) ^ { 3 } \delta ^ { 3 } ( \vec { p } - \vec { k } ) \quad \left[ a _ { k } ^ { \dagger } , a _ { p } ^ { \dagger } \right] = 0 \quad \left[ a _ { k } , a _ { p } \right] = 0 \, .$$
Note that my questions are labeled with a (Qi).
Schwartz then proceeds to do the following from (1)
$$ V _ { n i } ^ { ( R ) } = \left\langle \psi _ { e } ^ { 3 } \phi ^ { \gamma } \psi _ { e } ^ { 2 } | V | \psi _ { e } ^ { 1 } \psi _ { e } ^ { 2 } \right\rangle = \left\langle \psi _ { e } ^ { 3 } \phi ^ { \gamma } | V | \psi _ { e } ^ { 1 } \right\rangle \left\langle \psi _ { e } ^ { 2 } | \psi _ { e } ^ { 2 } \right\rangle = \left\langle \psi _ { e } ^ { 3 } \phi ^ { \gamma } | V | \psi _ { e } ^ { 1 } \right\rangle \\ = \frac{e}{2} \int d^3x \langle \phi^{\gamma} | \phi(\vec{x}) |0 \rangle \langle \psi_e^3 | \psi_e(\vec{x})^2 | \psi_e^1 \rangle \, .$$
My issue is with the first step
$$ \left\langle \psi _ { e } ^ { 3 } \phi ^ { \gamma } \psi _ { e } ^ { 2 } | V | \psi _ { e } ^ { 1 } \psi _ { e } ^ { 2 } \right\rangle = \left\langle \psi _ { e } ^ { 3 } \phi ^ { \gamma } | V | \psi _ { e } ^ { 1 } \right\rangle \left\langle \psi _ { e } ^ { 2 } | \psi _ { e } ^ { 2 } \right\rangle $$
as I do not understand how he is allowed to seperate the matrix element like this. (Q1) In particular, how is he allowed to move the state $\langle \psi_e^2 |$ across $V$ with seemingly no effect? Why is he allowed to do this? Can someone show me explicit justification for this step?
I believe this might stem from my view of the multi-particle states. Formally, I would view $| \psi_e^2 \psi_e^3 \phi^{\gamma} \rangle $ as something like
$$ \quad | \psi_e^2 \psi_e^3 \phi^{\gamma} \rangle \equiv | \psi_e^2 \rangle \otimes | \psi_e^3 \rangle \otimes | \phi^{\gamma} \rangle \propto a(\vec{p}_2) |0 \rangle \otimes a(\vec{p}_3) |0 \rangle \otimes a(\vec{p}_{\gamma}) |0 \rangle \equiv a(\vec{p}_2) a(\vec{p}_3) a(\vec{p}_{\gamma}) | 0 \rangle \, \tag{2} $$
where the photon and electron states "live" in different Fock spaces. (Q2) Is this a correct viewpoint?
Additionally, I believe this could just be the easiest way to evaluate the matrix element, in the sense that one has the freedom of breaking up the inner products, which is why he does it. However this would mean one should also be able to obtain the same answer by evaluating the matrix element as
$$ \quad \left\langle \psi _ { e } ^ { 3 } \phi ^ { \gamma } \psi _ { e } ^ { 2 } | V | \psi _ { e } ^ { 1 } \psi _ { e } ^ { 2 } \right\rangle = \frac{e}{2} \int d^3x \langle \phi^{\gamma} | \phi(\vec{x}) |0 \rangle \langle \psi_e^3 |\psi_e( \vec{x})^2 | \psi_e^2 \rangle \langle \psi_e^2 | \psi_e^1 \rangle \, \tag{3} $$
or even
$$ \quad \left\langle \psi _ { e } ^ { 3 } \phi ^ { \gamma } \psi _ { e } ^ { 2 } | V | \psi _ { e } ^ { 1 } \psi _ { e } ^ { 2 } \right\rangle = \frac{e}{2} \int d^3x \langle \phi^{\gamma} | \phi(\vec{x}) |0 \rangle \langle \psi_e^2 |\psi_e( \vec{x})^2 | \psi_e^2 \rangle \langle \psi_e^3 | \psi_e^1 \rangle \, \tag{4} $$ .
(Q3) Is this reasoning correct? How one partitions operators and states in the matrix element is arbitrary? Or is there some rule in which the field operators must act on specific states based on the description of the interaction, i.e. time ordering, which I am unaware of?
However, in evaluating (3) I obtain, modulo some normalization factors,
$$ \frac{e}{2} \int d^3x \langle \phi^{\gamma} | \phi(\vec{x}) |0 \rangle \langle \psi_e^3 |\psi_e( \vec{x})^2 | \psi_e^2 \rangle \langle \psi_e^2 | \psi_e^1 \rangle = e (2 \pi)^3 \delta( \vec{p}_2 - \vec{p}_3 - \vec{p}_{\gamma})\delta( \vec{p}_1 - \vec{p}_2) + e (2 \pi)^3 \delta( \vec{p}_1 - \vec{p}_2 ) \delta( \vec{p}_{\gamma}) $$
where I used the fact $ \langle 0 | \psi_e(\vec{x})^2 | 0 \rangle = 1$. For (4) I obtain
$$ \frac{e}{2} \int d^3x \langle \phi^{\gamma} | \phi(\vec{x}) |0 \rangle \langle \psi_e^2 |\psi_e( \vec{x})^2 | \psi_e^2 \rangle \langle \psi_e^3 | \psi_e^1 \rangle = e (2 \pi)^3 \delta( \vec{p}_3 - \vec{p}_1) \delta(\vec{p}_{\gamma}) $$
where I've used the fact $ \langle \psi_e^2 | \psi_e(\vec{x})^2 | \psi_e^2 \rangle = 1 $. I am not sure, in either case, where one would go from here to retrieve the correct answer of $ e (2\pi)^3 \delta( \vec{p}_1 - \vec{p}_3 - \vec{p}_{\gamma}) $ with all these delta functions laying around under no integrals. (Q4) Assuming these are correct, how can the correct answer be obtained from here? Specifically, how should I view these delta functions under no integrals?
Finally, concerning my naive use of the relations $ \langle \psi_e^2 | \psi_e(\vec{x})^2 | \psi_e^2 \rangle = 1 $ and $ \langle 0 | \psi_e(\vec{x})^2 | 0 \rangle = 1 $, I have reservations about this. Explicitly calculating each element I obtain
$$ \langle \psi_e^2 | \psi_e(\vec{x})^2 | \psi_e^2 \rangle = 1 + 2 \omega_{p_2} \langle 0 | \psi_e(\vec{x})^2 | 0 \rangle $$
and
$$ \langle 0 | \psi_e(\vec{x})^2 | 0 \rangle = \iint \frac{ d^3 p d^3 p'}{ (2 \pi)^6 } \frac{1}{\sqrt{4 \omega_{p} \omega_{p'} }} \left ( e^{i ( \vec{p} + \vec{p}') \cdot \vec{x} } \langle 0 | a(\vec{p}) a( \vec{p}') | 0 \rangle + e^{i ( \vec{p} - \vec{p}') \cdot \vec{x}} \langle 0 | a(\vec{p}) a^{\dagger}( \vec{p}') | 0 \rangle + e^{i ( - \vec{p} + \vec{p}') \cdot \vec{x} } \langle 0 | a^{\dagger} (\vec{p}) a( \vec{p}') | 0 \rangle + e^{- i ( \vec{p} + \vec{p}') \cdot \vec{x}} \langle 0 | a^{\dagger}(\vec{p}) a^{\dagger} ( \vec{p}') | 0 \rangle \right ) \\ = \iint \frac{ d^3 p d^3 p'}{ (2 \pi)^6 } \frac{1}{\sqrt{4 \omega_{p} \omega_{p'} }} \left ( e^{i( \vec{p} - \vec{p}') \cdot \vec{x} } \langle 0 | a(\vec{p}) a^{\dagger}(\vec{p}') |0 \rangle \right ) = \iint \frac{ d^3 p d^3 p'}{ (2 \pi)^3 } \frac{1}{\sqrt{4 \omega_{p} \omega_{p'} }} \delta( \vec{p} - \vec{p}') e^{i( \vec{p} - \vec{p}') \cdot \vec{x} } = \int \frac{ d^3 p}{ (2 \pi)^3 } \frac{1}{2 \omega_{p} } = ? $$
which means I really don't know what these two matrix elements are and therefore I am not sure the final form of (3) and (4) are correct. (Q5) What am I doing wrong in these other calculations?
If anyone would be willing, I'd greatly appreciate some feedback on these calculational issues. Thank you.