3

I have the Lagrange function:

$$L=\sqrt{\frac{\dot{x}^2+\dot{y}^2}{-y}}.\tag{1}$$

The energy is then:

$$H=\dot{x}\frac{\partial L}{\partial \dot{x}}+\dot{y}\frac{\partial L}{\partial \dot{y}}-L=0.\tag{2}$$ Can I somehow apply in this case the Hamilton or Hamilton-Jacobi formalism to find the motion?

Qmechanic
  • 220,844
K. Lindy
  • 31
  • 1

1 Answers1

1
  1. OP's Lagrangian (1) is the square root Lagrangian for a massive relativistic point particle (or equivalently, geodesics) in a curved space with metric $${\bf g}~=~\frac{\mathrm{d}x\odot \mathrm{d}x+ \mathrm{d}y\odot \mathrm{d}y}{-y}, \qquad y~<~0 .\tag{1}$$

  2. The square root Lagrangian (1) has worldline reparametrization invariance, i.e. gauge symmetry. As a result, the Lagrangian energy function $h(x,y,\dot{x},\dot{y})$ [and the Hamiltonian $H(x,y,p_x,p_y)$ in the corresponding Hamiltonian formalism, cf. e.g. this Phys.SE post] vanish.

  3. The easiest way to proceed is to consider the corresponding non-square root Lagrangian, cf. e.g. this Phys.SE post. Then the Legendre transformation, Hamiltonian & Hamilton-Jacobi theory are in principle straightforward to set up.

Qmechanic
  • 220,844