Yes it does. If you fix a (non inertial) frame of reference whose origin is on Earth's surface, at latitude $\lambda$, then a freely falling particle of mass $m$ has the equation of motion,
$$m\frac{d^2\vec r}{dt^2}=m\vec g_\text{ef}-2m\vec\omega\times\vec {\dot{r}},$$
where
$$\vec g_\text{ef}=\vec g-\vec\omega\times\left[\omega\times(\vec R+\vec r)\right]\approx \vec g-\vec\omega\times(\omega\times\vec r),$$
is the effective gravity which takes into account the centrifugal force and $\vec R$ is the vector from the center of the Earth to the origin of the non inertial frame. The vector $\vec\omega$ is the angular velocity of the Earth. Solving for $\vec r$ one gets
$$\vec r(t)=\vec v(0)t+\frac{\vec g_\text{ef}t^2}{2}-2\omega\times\int_0^t \vec r(t)dt.$$
This equation can be solved order by order, the first order being
$$\vec r(t)=\vec v(0)t+\frac{\vec g_\text{ef}t^2}{2}-2\omega\times\left(\frac{\vec v(0)t^2}{2}+\frac{\vec g_\text{ef}t^3}{6}\right).$$
If the particle has $\vec v(0)=\vec 0$, the deflection relative to the effective vertical (defined by the direction of $\vec g_\text{ef}$) is given by $$\Delta x=\frac{\vec\omega\times\vec g_\text{ef}t^3}{3}=\frac{g_\text{ef}\omega t^3\cos\lambda}{3}\hat i,$$
where $\hat i$ is directed east (tangentially to the circle of latitude). Plugging in the approximate time to fall from the height $h$, $t=\sqrt{2h/g_\text{ef}}$,
$$\Delta x=\frac{1}{3}\left(\frac{8h}{g_\text{ef}}\right)^{1/2}\omega\cos\lambda\approx \frac{1}{3}\left(\frac{8h^3}{g}\right)^{1/2}\omega\cos\lambda,$$
since $g_\text{ef}$ already is $g_\text{ef}=g+\mathcal O(\omega^2)$. The angular velocity of the Earth is $\omega\approx 7.3\cdot 10^{-5}\, \mathrm{s}^{-1}$, so a free fall of order $10^4\, \mathrm m$ would give a deviation of order $10^1\, \mathrm m$. Notice however that this not take the drag force into account.