Is the magnetic force a vector or a vector field?
The magnetic force is written without arguments: $$ \mathbf F=q \mathbf u \times \mathbf B \tag{1} $$ Does it mean that $\mathbf r=(x,y,z)\in\mathbb R^3$: $$ \mathbf F(\mathbf r)=q\mathbf u(\mathbf r)\times \mathbf B(\mathbf r). \tag{2} $$
Or is $\mathbf r$ a function of $t$, $\mathbf r(t)=(x(t),y(t),z(y))$: $$ \mathbf F(t)=q\mathbf u(\mathbf r(t))\times \mathbf B(\mathbf r(t)), \tag{3} $$
Or is $\mathbf u$ the derivative of $\mathbf r(t)$, $\mathbf u(t)=\dot{\mathbf r}(t)$: $$ \mathbf F(t)=q\mathbf u(t)\times \mathbf B(\mathbf r(t))=q\dot{\mathbf r}(t)\times \mathbf B(\mathbf r(t)) \tag{4} $$
Which one of the last three equations is mathematically correct?
Mathematical detalis:
In equation $(2)$: Here I consider two vector fields, $\mathbf B:\mathbb R^3\rightarrow \mathbb R^3$ and $\mathbf u:\mathbb R^3\rightarrow \mathbb R^3$. $\mathbf r$ is a constant vector, $\mathbf r\in\mathbb R^3$, i.e. $\mathbf r=(x,y,z)$. If so $\mathbf F$ must also be a vector field, $\mathbf F:\mathbb R^3\rightarrow \mathbb R^3$.
In equation $(3)$: I thought of two vector fields, $\mathbf B:\mathbb R^3\rightarrow \mathbb R^3$ and $\mathbf u:\mathbb R^3\rightarrow \mathbb R^3$. But $\mathbf r$ is a vector function, $\mathbf r:\mathbb R \rightarrow \mathbb R^3$, i.e. $\mathbf r(t)=(x(t),y(t),z(t))$. And we parametrize the vector fields with $\mathbf r(t)$, so $\mathbf B(\mathbf r(t))$ and $\mathbf u(\mathbf r(t))$. If so $\mathbf F$ must be a function of one variable, $\mathbf F:\mathbb R\rightarrow \mathbb R^3$.
In equation $(4)$: I thought of the vector field $\mathbf B:\mathbb R^3 \rightarrow \mathbb R^3$, but $\mathbf u$ is not a vector field, just a vector function of one variable, $\mathbf u:\mathbb R \rightarrow \mathbb R^3$, i.e. $\mathbf u(t)=(x(t),y(t),z(t))$. Also here we parametrize the vector field, $\mathbf B(\mathbf r(t))$. And from classical mechanics we know that the derivative of the position vector is the velocity vector, so $\dot{\mathbf r}(t)=\mathbf u(t)$. If so $\mathbf F$ must be a function of one variable, $\mathbf F:\mathbb R\rightarrow \mathbb R^3$.