I want to calculate the integration factor $\mu(E,V)$ for the differential $\mathrm{d}\sigma = \mu(E,V) \delta Q = \mu(E,V) \mathrm{d}E + \mu(E,V)p(u) \mathrm{d}V$. $p$ is a function of $u$ with $u = \frac{E}{V}$.
For a general $p$ I did the following
$\begin{align} \frac{\partial\mu}{\partial V} &= \frac{\partial (\mu \cdot p)}{\partial E} \\ &= p \cdot \frac{\partial \mu}{\partial E} + \mu \cdot \frac{\partial p}{\partial E} \\ &= p \cdot \frac{\partial \mu}{\partial E} + \mu \cdot \frac{\partial p}{\partial u} \frac{\partial u}{\partial E} \\ &= p \cdot \frac{\partial \mu}{\partial E} + \frac{\mu}{V} \cdot\frac{\partial p}{\partial u} \end{align}$
Can I solve this even further for a general $p$?
Now, I tried calculating $\mu$ for a specific $p = c \cdot u$. When I inserted this into the above equation I get
$\begin{align} \frac{\partial \mu}{\partial V} &= c \cdot \frac{E}{V} \cdot \frac{\partial \mu}{\partial E} + \frac{\mu}{V} \cdot c = \frac{c}{V} \left( E \cdot \frac{\partial \mu}{\partial E} + \mu \right) \end{align}$
How do I go on from here for getting $\mu$?