sufficiency condition for a motion to be periodic
I) one generalized coordinate $q$
the equation of motion (all constants are equal to one)
$$\frac{d^2 q}{dt^2}+F=0$$
The conditions that $q(t)$ periodic $(q(t)=q(t+T))$ are:
the force $F$ must be only a function of the generalized coordinate $q$
$F= F(q)$ is equal to:
$F_1=q\,,q^3\,,q^7\,\ldots=q^{2n+1}\quad n=0\,,1\,,2\ldots$ or
$F_2=\sin^{2n+1}(q)$ or
$F_3=\cos^{2n+1}(q)$ or
the potential energy is: $U_i=\int F_i(q)\,dq$
$ U_1=\int F_1(q)\,dq=\frac{1}{2}\frac{q^{2n+2}}{n+1}$
II) two generalized coordinate $q_1\,,q_2$
the equations of motion (all constants are equal to one$
$$\frac{d^2q_1}{dt^2}-q_1\,\dot{q}_2^2+F=0$$
$$\frac{d q_2}{dt}\,q_1^2=\text{const}$$
The conditions that q_1(t) periodic are:
the force F must be only a function of the generalized coordinate $q_1$
$ F=F(q_1)$ is equal to:
$\frac{1}{q_1^2}\,,\frac{1}{q_1^4}\,,\frac{1}{q_1^6}\,,\ldots$
the potential energy is:
$U=\int F(q_1)\,dq_1=\frac{1}{2n-1}\,q_1^{1-2 n}\,,\quad n=1\,,2\,,\ldots$