Let's take metric tensor $η_{μν}=(+,-,-,-)$ and Lagrangian $L=-m\sqrt{\dot{x}_{\mu }\dot{x}^{\mu }}$ .By the definition of momentum
$$p_{\alpha }=\frac{\partial L}{\partial \dot{x}^{\alpha }}=-\frac{m\dot{x}% _{\alpha }}{\sqrt{\dot{x}_{\mu }\dot{x}^{\mu }}}$$ or $p^{\alpha}=-\frac{m\dot{x}^{\alpha }}{\sqrt{\dot{x}_{\mu }\dot{x}^{\mu }}}$ then we fix $x^{0}=t$ and finaly we get
$$p^{0}=E=-\frac{m}{\sqrt{1-v^{2}}}$$
$$\vec{p}=-\frac{m\vec{v}}{\sqrt{1-v^{2}}}$$
So there is extra minus sign in the definition energy-momentum. Should we define the momentum with minus sign?
$$p_{\alpha }=-\frac{\partial L}{\partial \dot{x}^{\alpha }}$$