The Coulomb Gauge:
$\nabla \cdot A=0\\$
The Lorenz Gauge:
$ \nabla \cdot A= { \mu }_{ 0 }{ \epsilon }_{ 0 }\frac { \partial V }{ \partial t }$
Can both of these gauges be satisfied for some potential?
For example, the potentials:
$V(\vec { r } ,t)\quad =\quad 0\\ \vec { A } (\vec { r } ,t)\quad =\quad \begin{cases} \hat { j } { A }_{ 0 }cos(kx-\omega t)\quad ,\quad x>0 \\ \hat { j } { A }_{ 0 }cos(kx+\omega t)\quad ,\quad x<0 \end{cases}$
These potentials seem to satisfy both gauges. I'm unsure whether this is correct.