I have a problem concerning Taylor expansion of functions of Grassmann variables. Let us consider a general function $ f(\eta_1,\eta_2)$. Then the Taylor expansion around $\eta=0$ should be: $$ f(\eta_1,\eta_2)=f(0,0)+\left. \frac{\partial f}{\partial \eta_1 }\right|_0\eta_1+\left. \frac{\partial f}{\partial \eta_2 }\right|_0\eta_2+\frac{1}{2}\left. \frac{\partial^2 f}{\partial \eta_1 \partial\eta_2}\right|_0\eta_2\eta_1 +\frac{1}{2}\left. \frac{\partial^2 f}{\partial \eta_2 \partial\eta_1}\right|_0\eta_1\eta_2\qquad (1) $$
Then since Grassmann numbers and derivatives anti-commute, I can write: $$ \frac{\partial^2f}{\partial\eta_2\partial\eta_1}=-\frac{\partial^2f}{\partial\eta_1\partial\eta_2},\qquad\eta_1\eta_2=-\eta_2\eta_1$$Then the expansion of $f(\eta_1,\eta_2)$ becomes: $$ f(\eta_1,\eta_2)=f(0,0)+\left. \frac{\partial f}{\partial \eta_1 }\right|_0\eta_1+\left. \frac{\partial f}{\partial \eta_2 }\right|_0\eta_2+\frac{1}{2}\left. \frac{\partial^2 f}{\partial \eta_1 \partial\eta_2}\right|_0\eta_2\eta_1 +(-1)^2\frac{1}{2}\left. \frac{\partial^2 f}{\partial \eta_1 \partial\eta_2}\right|_0\eta_2\eta_1\qquad (2)$$That means: $$ f(\eta_1,\eta_2)=f(0,0)+\left. \frac{\partial f}{\partial \eta_1 }\right|_0\eta_1+\left. \frac{\partial f}{\partial \eta_2 }\right|_0\eta_2+\left. \frac{\partial^2 f}{\partial \eta_1 \partial\eta_2}\right|_0\eta_2\eta_1$$ My problem arises when treating functions like $e^{\eta_1+\eta_2}$; I have in fact, using expression 1: $$ \frac{1}{2}\left. \frac{\partial^2 e^{\eta_1+\eta_2}}{\partial \eta_1 \partial\eta_2}\right|_0\eta_2\eta_1 +\frac{1}{2}\left. \frac{\partial^2 e^{\eta_1+\eta_2}}{\partial \eta_2 \partial\eta_1}\right|_0\eta_1\eta_2=\frac{1}{2}\eta_1\eta_2+\frac{1}{2}\eta_2\eta_1=0 $$ Since singularly those derivatives should give 1. But if I use (2) I only have: $$ \left. \frac{\partial^2e^{\eta_1 +\eta_2}}{\partial\eta_1\eta_2}\right|_0\eta_1\eta_2=\eta_1\eta_2 $$Where am I wrong?