Which is the general representation $(n,m)$ of $SU(3)$ and how can I prove that $$C_{2}^{su(3)} = \frac{1}{3}\left(\frac{1}{3}(n^2+m^2+n\cdot m)+n\cdot m\right)\delta_{ij}~? $$
and the other question is why we need to define the cubic Casimir operator for $SU(3)$.
I know that the usual way is to use the basis $$\lbrace{T_{3},T_{8},F^{2}_{1},F_{2}^{1},F_{1}^{3},F_{3}^{1},F_{2}^{3},F_{3}^{2}\rbrace} $$
and then remembering that $$C_{2} = g^{ij}e_{i}e_{j}\Rightarrow C_{2}^{su(3)} = \frac{1}{3}\left(T_{3}^{2}+T_{2}^{2}+F_{1}^{2}F_{2}^{1}+F_{2}^{1}F_{1}^{2}+F_{1}^{3}F_{3}^{1}+F_{3}^{1}F^{1}_{3}+F_{2}^{3}F_{3}^{2}+F_{3}^{2}F_{2}^{3}\right) $$
but I can't see how to get the first expression. In $SU(2)$ we used its complex extension $sl(2,\mathbb{C})$ defining the new basis $$\lbrace{T_{+},T_{-},T_{3}\rbrace} $$
where $T_{i}=ie_{i}$ and $T_{\pm} = \frac{1}{\sqrt{2}}(e_{i}\pm ie_{i})$ and working a bit we can find that $$C_{2}^{su(2)} = \frac{1}{2}(T_{+}T_{-}+T_{-}T_{+}+T_{3}^{2}) $$ and using the eigenvalues of the basis elements we finally prove that $$C_{2}^{su(2)}|j>= \frac{1}{2}m(m+1)|j> $$ I think that it's something analogous maybe? the pdf's that I've been reading on internet are so unclear :(
Any help is very grateful!