In Peskin's book (an introduction to QFT), Page 655, the axial vector current is defined as follows, \begin{eqnarray*} j^{\mu5} & = & \text{symm }\lim_{\epsilon\rightarrow0}\bigg\{\bar{\psi}(x+\frac{\epsilon}{2})\gamma^{\mu}\gamma^{5}\exp\bigg(-ie\int_{x-\epsilon/2}^{x+\epsilon/2}dz\cdot A(z)\bigg)\psi(x-\frac{\epsilon}{2})\bigg\}. \tag{19.22} \end{eqnarray*}
Then he obtained $\partial_{\mu}j^{\mu5}$ as follows, \begin{eqnarray*} \partial_{\mu}j^{\mu5} & = & \text{symm }\lim_{\epsilon\rightarrow0}\bigg\{[\partial_{\mu}\bar{\psi}(x+\frac{\epsilon}{2})]\gamma^{\mu}\gamma^{5}\exp\bigg(-ie\int_{x-\epsilon/2}^{x+\epsilon/2}dz\cdot A(z)\bigg)\psi(x-\frac{\epsilon}{2})\\ & & +\bar{\psi}(x+\frac{\epsilon}{2})\gamma^{\mu}\gamma^{5}\exp\bigg(-ie\int_{x-\epsilon/2}^{x+\epsilon/2}dz\cdot A(z)\bigg)[\partial_{\mu}\psi(x-\frac{\epsilon}{2})]\\ & & +\bar{\psi}(x+\frac{\epsilon}{2})\gamma^{\mu}\gamma^{5}[-ie\epsilon^{\nu}\partial_{\color{Red}{\mu}}A_{\color{Red}{\nu}}(x)]\psi(x-\frac{\epsilon}{2})\bigg\}. \tag{19.24} \end{eqnarray*}
I know the last line of above formula (19.24) comes from \begin{eqnarray*} \text{symm }\lim_{\epsilon\rightarrow0}\bigg\{\bar{\psi}(x+\frac{\epsilon}{2})\gamma^{\mu}\gamma^{5}\bigg[\partial_{\mu}\exp\bigg(-ie\int_{x-\epsilon/2}^{x+\epsilon/2}dz\cdot A(z)\bigg)\bigg]\psi(x-\frac{\epsilon}{2})\bigg\}. \end{eqnarray*}
But when I carefully calculate it, I find \begin{eqnarray*} & & \text{symm }\lim_{\epsilon\rightarrow0}\bigg\{\bar{\psi}(x+\frac{\epsilon}{2})\gamma^{\mu}\gamma^{5}\bigg[\partial_{\mu}\exp\bigg(-ie\int_{x-\epsilon/2}^{x+\epsilon/2}dz\cdot A(z)\bigg)\bigg]\psi(x-\frac{\epsilon}{2})\bigg\}\\ & = & \text{symm }\lim_{\epsilon\rightarrow0}\bigg\{\bar{\psi}(x+\frac{\epsilon}{2})\gamma^{\mu}\gamma^{5}\exp\bigg(-ie\int_{x-\epsilon/2}^{x+\epsilon/2}dz\cdot A(z)\bigg)\\ & & \times(-ie)\partial_{\mu}\bigg[\int_{x-\epsilon/2}^{x+\epsilon/2}dz\cdot A(z)\bigg]\psi(x-\frac{\epsilon}{2})\bigg\}\\ & = & \text{symm }\lim_{\epsilon\rightarrow0}\bigg\{\bar{\psi}(x+\frac{\epsilon}{2})\gamma^{\mu}\gamma^{5}(-ie)\partial_{\mu}\bigg[\int_{x-\epsilon/2}^{x+\epsilon/2}dz\cdot A(z)\bigg]\psi(x-\frac{\epsilon}{2})\bigg\}\\ & = & \text{symm }\lim_{\epsilon\rightarrow0}\bigg\{\bar{\psi}(x+\frac{\epsilon}{2})\gamma^{\mu}\gamma^{5}(-ie)[A_{\mu}(x+\frac{\epsilon}{2})-A_{\mu}(x-\frac{\epsilon}{2})]\psi(x-\frac{\epsilon}{2})\bigg\}\\ & = & \text{symm }\lim_{\epsilon\rightarrow0}\bigg\{\bar{\psi}(x+\frac{\epsilon}{2})\gamma^{\mu}\gamma^{5}[-ie\epsilon^{\nu}\partial_{\color{Red}{\nu}}A_{\color{Red}{\mu}}(x)]\psi(x-\frac{\epsilon}{2})\bigg\}. \end{eqnarray*}
The factor $\epsilon^{\nu}\partial_{\color{Red}{\nu}}A_{\color{Red}{\mu}}(x)$ in the last line of my calculation is different from the factor $\epsilon^{\nu}\partial_{\color{Red}{\mu}}A_{\color{Red}{\nu}}(x)$ in the last line of Peskin's calculation. So my question is: How this difference comes from?