Suppose $a\overline{a}\rightarrow\gamma$ is possible for a particle $a$ with a definite nonzero mass, $p_a^2=m^2>0$ ("mostly-minus" metric, $c=1$). Conservation of momentum implies
$p_\gamma=p_a+p_{\overline{a}}\implies p_\gamma^2=m_\gamma^2=0=p_a^2+p_{\overline{a}}^2+2p_a p_{\overline{a}}=2m^2+2 p_a \cdot p_\overline{a}$
However, the scalar product on RHS is bounded from below: We have (boldface quantities are three-vectors)
$p_a \cdot p_\overline{a}=E_a E_\overline{a} - \mathbf{p_a}\cdot\mathbf{p_\overline{a}}=\sqrt{m^2+\mathbf{p_a}^2}\sqrt{m^2+\mathbf{p_\overline{a}}^2}-\mathbf{p_a}\cdot\mathbf{p_\overline{a}}$
but since $m^2>0$ by assumption
$\geq\sqrt{\mathbf{p_a}^2}\sqrt{\mathbf{p_\overline{a}}^2}-\mathbf{p_a}\cdot\mathbf{p_\overline{a}}=\|\mathbf{p_a}\|\|\mathbf{p_\overline{a}}\|(1-\cos(\angle(\mathbf{p_a},\mathbf{p_\overline{a}}))\geq\|\mathbf{p_a}\|\|\mathbf{p_\overline{a}}\|(1-1)=0$.
Hence, $0\geq2m^2>0$, which is a contradiction.