Can someone prove that:
$$\nabla \cdot \mathbf{B} = 0 \implies \mathbf{B} = \nabla \times \mathbf{A}~?$$
I know that $$\nabla \cdot (\nabla \times \mathbf{A}) = 0$$ identically.
But can one prove that if $\mathbf{B} \neq \nabla \times \mathbf{A}$ for any $\mathbf{A}$ then, $\nabla \cdot \mathbf{B} \neq 0?$