3

Following my earlier question in this Phys.SE post I have another question regarding the derivation I am struggling through!

Considering the variation in the Lagrange density for $x'=x+\delta x$ and $\phi'(x')=\phi(x)+\delta \phi (x)$. \begin{equation} \mathcal L'(x')=\mathcal L'(x) +\frac {d \mathcal L}{d x^i}\delta x^i=\mathcal L(x)+\underbrace{\mathcal L'(x)-\mathcal L (x)}_{\bar \delta \mathcal L(x)}+\frac {d \mathcal L}{d x^i}\delta x^i \end{equation} Such that the variation in the action is given by, \begin{equation} \delta S=\int [\mathcal L(x)+\bar \delta \mathcal L(x)+\frac {d \mathcal L}{d x^i}\delta x^i ]dx'-\int \mathcal L(x) dx \end{equation}
How then do we obtain the following, \begin{equation} \delta S=\int \big[\bar \delta \mathcal L(x)+\frac{d }{d x^i}(\mathcal L\delta x^i)\big]dx \end{equation}

I understand it is to do with the Jacobian of the transformation that we approximate $$dx'=dx(1+\partial _i\delta x^i+\dots ),$$ but how does this follow and what exactly does this mean (again sorry if its obvious).

AngusTheMan
  • 2,581
  • 1
  • 19
  • 33

1 Answers1

6

This is how we taylor expand the determinant to first order \begin{align} \mathcal{J}&= \text{det}\left(\frac{\partial x'^j}{\partial x^i} \right) \\ &= \text{det}\left(\delta _i ^j + \partial_i\delta x^j\right) \\ &= \text{exp}\left( \text{tr log }\left(\delta _i ^j + \partial_i\delta x^j\right)\right) \\ &= \text{exp}\left( \text{tr }\partial_i\delta x^j + \mathcal{O}(\delta x^2)\right) \\ &=1 + \text{tr }\partial_i\delta x^j + \mathcal{O}(\delta x^2)\\ &=1 + \partial_i\delta x^i + \mathcal{O}(\delta x^2) \end{align}

Ali Moh
  • 5,201