I am trying to linearize the following GP eq: \begin{equation} i\partial_{t}\psi(r,t)=\left[-\frac{\nabla^{2}}{2m}+g\left|\psi(r,t)\right|^{2}+V_{d}(r)\right]\psi(r,t) \end{equation}
The ansatz for the mean-field wavefunction is: \begin{equation} \psi_{0}(r,t)=\psi_{0}\, e^{i(k_{0}r-\omega_{0}t)} \end{equation}
One then has to add the fluctuations on top: \begin{equation} \psi(r,t)=\big[\psi_{0}(r)+\delta\psi(r,t)\big]\, e^{-i\omega_{0}t} \end{equation}
Pluggin this into the original equation we get to 0 order that \begin{equation} \omega_{0}-\frac{k_{0}^{2}}{2m}=g|\psi_0|^2. \end{equation}
Expanding to first order (linear response) we get \begin{equation} i\partial_{t}\delta\vec{\psi}=\mathcal{L}\cdot\delta\vec{\psi}+\vec{F}_{d} \end{equation}
with \begin{equation} \delta\vec{\psi}(r,t)=\left(\begin{array}{c} \delta\psi(r,t)\\ \delta\psi^{\star}(r,t) \end{array}\right) \end{equation}
\begin{equation} \vec{F}_{d}(r)=V_{d}(r)\,\left(\begin{array}{c} \psi_{0}(r)\\ -\psi_{0}^{*}(r) \end{array}\right) \end{equation}
\begin{equation} \mathcal{L}=\left(\begin{array}{cc} -\frac{k_{0}^{2}}{2m}-\frac{\nabla^{2}}{2m}+g|\psi_{0}|^2 & g\psi_{0}^{2}\, e^{2ik_{0}r}\\ -g\psi_{0}^{2\star}\, e^{-2ik_{0}r} & -\left(-\frac{k_{0}^{2}}{2m}-\frac{\nabla^{2}}{2m}+g|\psi_{0}|^2\right) \end{array}\right) \end{equation}
The goal here is to determine $\delta\vec{\psi}(r,t)$, by diagonalizing $\mathcal{L}$ and expanding on the corresponding eigenmodes. I am trying to follow these notes http://arxiv.org/abs/cond-mat/0105058v1, which give the general formalism starting on page 66.
However, the author says $\mathcal{L}$ is not diagonalizable in general therefore one has to do the trick of splitting $\delta\psi$ into a part along $\psi_0$ and a part orthogonal to it (see eq. 229). This leads to a new operator $\mathcal{L}$, given by (235) which is diagonalizable.
How can I apply this formalism to my problem? How do I construct the new operator $\mathcal{L}$? How do I deal with the projection operators (233) and (234), etc