7

I found in the literatures two different definitions of the tensor order parameter of nematic liquid crystals.

One is $$ Q_{ij}=\frac{S}{2}(3n_{i}n_{j}-\delta_{ij}), $$ where $S$ is the scalar order parameter and $\mathbf{n}$ the director, $i=x, y, z$ . The other definition is $$ Q_{ij}=\langle u_{i}u_{j}-\frac{1}{3}\delta_{ij}\rangle, $$ where $\mathbf{u}$ is a unit vector along the axis of one molecule which describes its orientation, $i=x, y, z$, and $\langle\cdot\rangle$ represents a thermal average.

In some special cases, the two definitions are the same (e.g., in a perfectly aligned nematic). Are the two definitions identical to each other in general? If yes how to prove it?

1 Answers1

5

This is a matrix algebra heavy solution. I think there might be a better way to do this, but here goes.

Take from Denis Andrienko's notes: $$Q_{ij} = \frac{1}{N}\sum_\alpha(u_i^\alpha u_j^\alpha - \frac{1}{3}\delta_{ij})$$ where $\mathbf{u}^\alpha$ is the unit vector pointing along the long axis of molecule $\alpha$ located at $\mathbf{x}^\alpha$, and $N$ the number of molecules.

Or if you prefer matrix notation, $$Q = \frac{1}{N}\sum_\alpha((\mathbf{u}^\alpha)(\mathbf{u}^\alpha)^T - \frac{1}{3}I)$$

We write out $\langle Q \rangle$ in an orthonormal basis $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$, where one of the axes is set by the director $\mathbf{e}_1 = \langle\sum_\alpha \mathbf{u}^\alpha\rangle \big/ \|\langle\sum_\alpha \mathbf{u}^\alpha\rangle\|$: $$\langle Q\rangle = U^T \frac{1}{N}\sum_\alpha \langle (\mathbf{u}^\alpha)(\mathbf{u}^\alpha)^T \rangle U - \frac{1}{3}I$$ where the matrix $U = [\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3]$. This can be written as $$\langle Q\rangle = \frac{1}{N}\sum_\alpha \langle ((\mathbf{u}^\alpha)^TU)^T((\mathbf{u}^\alpha)^TU) \rangle - \frac{1}{3}I$$

Writing this out in its full glory: $$\langle Q\rangle = \frac{1}{N}\sum_\alpha \begin{pmatrix} \langle((\mathbf{u}^\alpha)^T\mathbf{e}_1)^2\rangle & \langle(\mathbf{u}^\alpha)^T\mathbf{e}_1(\mathbf{u}^\alpha)^T\mathbf{e}_2\rangle & \langle(\mathbf{u}^\alpha)^T\mathbf{e}_1(\mathbf{u}^\alpha)^T\mathbf{e}_3\rangle \\ \langle(\mathbf{u}^\alpha)^T\mathbf{e}_1(\mathbf{u}^\alpha)^T\mathbf{e}_2\rangle & \langle((\mathbf{u}^\alpha)^T\mathbf{e}_2)^2\rangle & \langle(\mathbf{u}^\alpha)^T\mathbf{e}_2(\mathbf{u}^\alpha)^T\mathbf{e}_3\rangle \\ \langle(\mathbf{u}^\alpha)^T\mathbf{e}_1(\mathbf{u}^\alpha)^T\mathbf{e}_3\rangle & \langle(\mathbf{u}^\alpha)^T\mathbf{e}_2(\mathbf{u}^\alpha)^T\mathbf{e}_3\rangle & \langle((\mathbf{u}^\alpha)^T\mathbf{e}_3)^2\rangle \end{pmatrix} - \frac{1}{3}I $$

Writing $\mathbf{e}_1$ out, we find that $\langle((\mathbf{u}^\alpha)^T\mathbf{e}_1)^2\rangle$ = $\langle\cos^2\theta^\alpha\rangle$. If the molecule is uniaxial, we have $\langle((\mathbf{u}^\alpha)^T\mathbf{e}_2)^2\rangle = \langle((\mathbf{u}^\alpha)^T\mathbf{e}_3)^2\rangle = \langle\frac{1}{2}\cos^2(\frac{\pi}{2}-\theta^\alpha)\rangle$ (if its not uniaxial, one gets more weight while the other the same amount less). The offdiagonals vanish and the sum is just an average over all molecules.

Thus we have $$ \langle Q \rangle = \begin{pmatrix} \frac{2}{3}S & 0 & 0 \\ 0 & -\frac{1}{3}S & 0 \\ 0 & 0 & -\frac{1}{3}S \end{pmatrix} $$ where $S = \frac{1}{2}\langle 3\cos^2\theta^\alpha - 1 \rangle$.

That is to say that we can write $$\langle Q_{ij}\rangle = S(n_i n_j - \frac{1}{3}\delta_{ij})$$ where the unit vector $\mathbf{n}$ specifies the direction of the principal axis of $\langle Q_{ij}\rangle$ in the transformed coordinates (e.g. $\textbf{n} = (1, 0, 0)$ points towards $\textbf{e}_1$ etc.).

jdow
  • 103
alarge
  • 2,483